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Abstract. Here we consider the discrete time dynamics described by a trans-
formation T : M → M , where T is either the action of shift T = σ on the

symbolic space M = {1, 2, ..., d}N, or, T describes the action of a d to 1 expand-

ing transformation T : S1 → S1 of class C1+α ( for example x → T (x) = d x
(mod 1) ), where M = S1 is the unitary circle.

It is known that the infinite dimensional manifold N of Hölder equilibrium

probabilities is an analytical manifold and carries a natural Riemannian met-
ric. Given a certain normalized Hölder potential A denote by µA ∈ N the

associated equilibrium probability. The set of tangent vectors X (a function

X : M → R) to the manifold N at the point µA coincides with the kernel
of the Ruelle operator for the normalized potential A. The Riemannian norm

|X| = |X|A of the vector X, which is tangent toN at the point µA, is described

via the asymptotic variance, that is, satisfies

|X|2 = 〈X,X〉 = limn→∞
1
n

∫
(
∑n−1
i=0 X ◦ T

i)2 dµA.

Given two unitary tangent vectors to the manifold N at µA, denoted by
X and Y , we will show that the sectional curvature K(X,Y ) is always non-

negative. In our proof for the above expression for the curvature it is necessary

in some moment to show the existence of geodesics for such Riemannian metric.

1. Introduction

We denote by T : M → M a transformation acting on the metric space M ,
which is either the shift σ acting on M = {1, 2, ..., d}N, or, T is the action of a d
to 1 expanding transformation T : S1 → S1, of class C1+α, where M = S1 is the
unitary circle.

For a fixed α > 0 we denote by Hol the set of α-Hölder functions on M .
For a Hölder potential A : M → R we define the Ruelle operator (sometimes

called transfer operator) - which acts on Hölder functions f : M → R - by

(1) f → LAf(x) =
∑

T (y)=x

eA(y)f(y)

It is known (see for instance [15] or [1]) that LA has a positive, simple leading
eigenvalue λA with a positive Hölder eigenfunction hA. Moreover, the dual operator
acting on measures L ∗A has a unique eigenprobability νA which is associated to the
same eigenvalue λA.

Given a Hölder potential A we say that the probability µA - defined on the Borel
sigma-algebra of M - is the equilibrium probability for A, if µA maximizes the
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values

h(µ) +

∫
A dµ,

among Borel T -invariant probabilities µ and where h(µ) is the Kolmogorov-Sinai
entropy of µ.

It is known that the probability µA is unique and is given by the expression
µA = hA νA.

In some particular cases the equilibrium probability (also called Gibbs probabil-
ity) µA is the one observed on the thermodynamical equilibrium in the Statistical
Mechanics of the one dimensional lattice N (under an interaction described by the
potential A). As an example (where the spin in each site of the lattice N could be
+ or −) one can take M = {+,−}N, A : M → R and T is the shift.

We say that a Hölder potential A is normalized if LA 1 = 1. In this case λA = 1
and µA = νA.

We say that two potentials A,B in Hol are cohomologous to each other (up to a
constant), if there exists a continuous function g : M → R and a constant c, such
that,

(2) A = B + g − g ◦ T − c.

Note that the equilibrium probability for A, respectively B, is the same, if A
and B are coboundary to each other. In each coboundary class (an equivalence
relation) there exists a unique normalized potential A (see [15]). Therefore, the
set of equilibrium probabilities for Hölder potentials N can be indexed by Hölder
potentials A which are normalized. We will use this point of view here: A ↔ µA.

The infinite dimensional manifold N of Hölder equilibrium probabilities µA is an
analytical manifold (see [17], [12], [15], [6]) and it was shown in [13] that it carries
a natural Riemannian structure. We will recall some definitions and properties
described on [13].

The set of tangent vectors X (a function X : M → R) to N at the point µA
coincides with the kernel of LA. The Riemannian norm |X| = |X|µA of the vector
X, which is tangent to N at the point µA, is described (see Theorem D in [13]) via
the asymptotic variance, that is, satisfies

(3) |X| =
√
〈X,X〉 =

√√√√ lim
n→∞

1

n

∫
(

n−1∑
j=0

X ◦ T j)2 dµA

The associated bilinear form on the tangent space at the point µA can be described
(see Theorem D in [13]) by

(4) 〈X , Y 〉 =

∫
X Y dµA.

This bilinear form is positive semi-definite and in order to make it definite one
can consider equivalence classes (cohomologous up to a constant) as described by
Definition 5.4 in [13]. In this way we finally get a Riemannian structure on N (as
anticipated some paragraphs above). Elements X on the tangent space at µA have
the property

∫
X dµA = 0.

The tangent space to N at µA is denoted by TAN .
Our main result is Theorem 4.1 which claims:
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Theorem 1.1. Given two unitary orthogonal vectors X,Y tangent to N at the
point µA we have that the sectional curvature K(X,Y ) is nonnegative.

The explicit expression for the curvature is given by (19), Theorem 4.1.

We point out that section 8 in [13], which considers a simplified model for po-
tentials that depend just on two coordinates on the symbolic space {1, 2}N, there
was an indication that the curvature should be non negative. The curvature on this
case can be obtained explicitly and one can check that there is no upper bound for
the curvature.

We will show in section 5 the existence of geodesics for such Riemannian metric
will substantially simplify the calculation of the sectional curvatures.

An important tool which will be used here is item (iv) on Theorem 5.1 in [13]:
for all normalized A ∈ N , X ∈ TAN and ϕ a continuous function it holds:

(5)
d

dt

∫
ϕdµA+ tX

∣∣∣∣
t=0

=

∫
ϕX dµA.

In [14] , [3] and [16] the authors consider a similar kind of Riemannian structure.
The bilinear form considered in [14] is the one we consider here divided by the
entropy of µA. As mentioned in section 8 in [13] in this case the curvature can be
positive and also negative in some parts.

The main motivation for the results obtained on [14] (and also [3]) is related to
the study of a particular norm on the Teichmüller space.

A reference for general results in infinite dimensional Riemannian manifolds is
[2].

In section 6 in [13] it is explained that the Riemannian metric considered here
is not compatible with the 2-Wasserstein Riemannian structure on the space of
probabilities.

We would like to thanks to Paulo Varandas, Miguel Paternain and Gonzalo
Contreras for helpful conversations on questions related to the topics considered on
this paper.

General references for analyticity (and moreover, inverse function theorems and
implicit function theorems) in Banach spaces are [6] and [18].

2. Preliminaries of Riemannian geometry

Let us introduce some basic notions of Riemannian geometry. Given an infinite
dimensional C∞ manifold (M̃, g) equipped with a smooth Riemannian metric g,

let T M̃ be the tangent bundle and T1M̃ be the set of unit norm tangent vectors of
(M̃, g), the unit tangent bundle. Let χ(M̃) be the set of C∞ vector fields of M̃ .

In [2] several results for Riemannian metrics on infinite dimensional manifolds
are presented. We will not use any of the results of that paper.

The only infinite dimensional manifold we will be interested here is N which
is the set of Hölder equilibrium probabilities (which was initially defined in [13]).
Tangent vectors, differentiability, analyticity, etc, should be always considered in
the sense of the setting described in sections 2.3 and 5.1 in [13] (see also [5] and
[12]). We will elaborate on this later.

In our case, where M̃ = N and g is the L2 metric gA(X,Y ) =
∫
X Y dµA,

For practical purposes, we shall call Energy the function E(v) = g(v, v), v ∈ TN ,
although in mechanics the energy is rather defined by 1

2g(v, v).
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Given a smooth function f : N −→ R, the derivative of f with respect to a
vector field X ∈ χ(N ) will be denoted by X(f). The Lie bracket of two vector fields
X,Y ∈ χ(N ) is the vector field whose action on the set of functions f : N −→ R is
given by [X,Y ](f) = X(Y (f))− Y (X(f)).

The Levi-Civita connection of (N , g), ∇ : χ(N )×χ(N ) −→ χ(N ), with notation
∇(X,Y ) = ∇XY , is the affine operator characterized by the following properties:

(1) Compatibility with the metric g:

Xg(Y,Z) = g(∇XY, Z) + g(Y,∇XZ)

for every triple of vector fields X,Y, Z.
(2) Absence of torsion:

∇XY −∇YX = [X,Y ].

(3) For every smooth scalar function f and vector fields X,Y ∈ χ(N ) we have
• ∇fXY = f∇XY ,
• Leibniz rule: ∇X(fY ) = X(f)Y + f∇XY .

The expression of ∇XY can be obtained explicitly from the expression of the
Riemannian metric, in dual form. Namely, given two vector fields X,Y ∈ χ(N ),
and Z ∈ χ(N ) we have

g(∇XY, Z) =
1

2
(Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )(6)

− g([X,Z], Y )− g([Y,Z], X)− g([X,Y ], Z)),(7)

A smooth curve γ : (a, b) −→ N is called a geodesic of (N , g) if ∇γ′(t)γ
′(t) = 0 for

every t ∈ (a, b). If M̃ is finite dimensional, in any coordinate system the equation
of geodesics gives rise to a second order, ordinary differential equation, so given
any initial condition (p, v) in T1M̃ there exists a unique solution γ(p,v)(t) such that

γ(p,v)(0) = p, γ′(p,v)(0) = v. If M̃ is infinite dimensional, the existence of geodesics

is a nontrivial issue that is usually tackled with the so-called Palais-Smale condition
(see for instance [11]).

We shall show in the last section that:

Theorem 2.1. Given A ∈ N , X ∈ TAN , there exist ρ > 0 and a unique geodesic
γ : (−ρ, ρ) −→ N such that γ(0) = A, γ′(0) = X.

Although we won’t show the Palais-Smale condition for N , we shall show that
the manifold (N , 〈, 〉) has enough compactness to ensure the existence of geodesics
provided that TAN has a countable basis (as a Banach space). This is the case of
normalized potentials of the expanding map T (x) = 2x(mod.1) in S1 (of course)
and for the shift of two symbols (see for instance [10]).

Once we have geodesics we can solve the equation of parallel transport.

Theorem 2.2. Under the assumptions of Theorem 2.1, given a unit vector Y ∈
TAN there exists a unique smooth vector field Y (t) ∈ Tγ(t)N , t ∈ (−ε, ε), such that
Y (0) = Y and

(8) ∇γ′(t)Y (t) = 0,

for every t ∈ (−ε, ε). This vector field is the parallel transport of Y along γ(t).

The proof of this theorem is postponed to the last section, it is actually a con-
sequence of the proof of the existence of geodesics.
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2.1. Fermi coordinates. A parametrized local surface S : (−ε, ε)×(−δ, δ) −→ N ,
with parameters S(t, s), is given in Fermi coordinates if

(1) S(t, 0) = γ(t) is a geodesic,

(2) The vector field ∂S(t,0)
∂s is parallel along γ(t) and is perpendicular to γ′(t),

(3) The curves St(s) = S(t, s), s ∈ (−δ, δ) are geodesics for each given t ∈
(−ε, ε).

As a consequence of Theorems 2.1 and 2.2 we have

Proposition 2.3. Given A ∈ N , X,Y ∈ TAN with unit norms, there exists a
local surface S : (−ε, ε) × (−δ, δ) −→ N parametrized in Fermi coordinates such

that S(t, 0) = γ(t) is a geodesic with γ(0) = A, ∂S(0,0)
∂s = Y , where γ′(0) = X.

Proof. The proof goes as for Riemannian manifolds of finite dimensions. Let X ∈
TAN with unit norm, let γ(t) be the geodesic whose initial conditions are γ(0) = A,
γ′(0) = X. Given Y ∈ TAN with unit norm such that 〈X,Y 〉 = 0, let Y (t) be the
parallel transport of Y along γ(t). It is clear that 〈γ′(t), Y (t)〉 = 0 for every t
because parallel transport is an isometry, so let us consider the local surface S
defined by

(9) S(t, s) = β(γ(t),Y (t))(s),

for s ∈ (−δ, δ) depending on Y , where β(γ(t),Y (t))(s) is the geodesic whose initial
conditions are β(γ(t),Y (t))(0) = γ(t), β′(γ(t),Y (t))(0) = Y (t). Since N is analytic,

the parallel transport is analytic and geodesics depend analytically on their initial
conditions. So the local surface S is an analytic surface whose coordinates are Fermi
coordinates according to the definition. �

2.2. Curvature tensor and sectional curvatures. We follow ?? for the defi-
nitions in the subsection. Let χ∞(N ) be the set of C∞ vector fields of N . The
curvature tensor

(10) R : χ∞(N )× χ∞(N )× χ∞(N ) −→ χ∞(N )

is defined in terms of the Levi-Civita connection as follows

(11) R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

The sectional curvature of the plane generated by two vector fields X,Y at the
point A ∈ N , which are orthonormal at A, is given by

(12) K(X,Y ) = 〈∇Y∇XY −∇X∇XY +∇[X,Y ]X,X〉 = 〈R(X,Y )Y,X〉.
Let A be a normalized Hölder potential and γ : (−ε, ε) −→ N a geodesic of the

Riemannian metric such that γ(0) = A, γ′(t) = X(t), where X(t) is a parallel unit
vector field. Consider the local smooth surface S(t, s) given in Fermi coordinates
given by Lemma 2.3. Namely, let Y be a unit vector field in the tangent space of N ,
that is perpendicular to γ′(t) and is parallel in γ(t), so ∇XY = 0, let γY (t)(s) be
the geodesic given by the initial conditions γY (t)(0) = γ(t), γ′Y (t)(0) = Y (t). Then,

S(t, s) = γY (t)(s),

for every | t |, | s |≤ ε. It is clear that S(t, 0) = γ(t), and that the image S of
S : (−ε, ε) × (−ε, ε) −→ Hol is a smooth embedded surface on Hol for ε suitably
small. Let us calculate the sectional curvature K(X,Y ) at the point A = γ(0).
Through the section we shall use the notation for derivatives d

dtZ = Zt for any
vector field or function.
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Let X̄ be the vector field tangent to the t-coordinate in S, it extends the vector
field X and it is not necessarily geodesic in the whole surface. The vector fields
X̄, Y commute, and moreover,

Lemma 2.4. The vector fields X̄ and Y are perpendicular in S.

Proof. Since Y is parallel along γ and geodesic, we have

Y 〈X̄, Y 〉 = 〈∇Y X̄, Y 〉+ 〈X̄,∇Y Y 〉 = 〈∇Y X̄, Y 〉 = 〈∇X̄Y, Y 〉

=
1

2
X̄〈Y, Y 〉 = 0,

where in the last equality we used the fact that [X̄, Y ] = 0. Therefore, the function
Y 〈X̄, Y 〉 vanishes in S, and hence the function 〈X̄, Y 〉 is constant along the integral
curves of Y . But at γ(t) this function is 〈X,Y 〉 which vanishes by hypothesis. So
〈X̄, Y 〉 vanishes everywhere in S thus proving our claim. �

Therefore, from the definition of sectional curvatures we deduce that,

Lemma 2.5. Along the geodesic γ(t) we have

(13) K(X̄, Y ) = −1

2
Y (Y (‖ X̄ ‖)2)

Proof. The symmetry properties of the curvature tensor imply that 〈R(X,Y )Y,X〉 =
−〈R(X,Y )X,Y 〉, so let us calculate 〈R(X,Y )X,Y 〉.

The fact that X̄ and Y commute implies that

〈R(X,Y )X,Y 〉 = 〈∇X̄∇Y X̄ −∇Y∇X̄X̄, Y 〉.

The first term of the formula gives

〈∇X̄∇Y X̄, Y 〉 = X̄〈∇Y X̄, Y 〉 − 〈∇Y X̄,∇X̄Y 〉
= X̄(Y 〈X̄, Y 〉 − 〈X̄,∇Y Y 〉)
= 0

since ∇Y Y = 0, ∇X̄Y = 0 along γ(t) by assumption, and 〈X̄, Y 〉 = 0 by Lemma
2.4.

The second term of the formula gives

−〈∇Y∇X̄X̄, Y 〉 = −Y 〈∇X̄X̄, Y 〉+ 〈∇X̄X̄,∇Y Y 〉)
= −Y (X̄〈X̄, Y 〉 − 〈X̄,∇X̄Y 〉)
= Y 〈X̄,∇Y X̄〉

=
1

2
Y (Y 〈X̄, X̄〉)

because 〈X̄, Y 〉 = 0 by Lemma 2.4, X̄, Y commute so ∇X̄Y = ∇Y X̄, 〈X̄, Y 〉 = 0
and ∇Y Y = 0. This proves the lemma

�

3. Curves of constant energy

In this section we show some technical results concerning curves of constant
energy in N that will be important in the calculation of the sectional curvature
K(X,Y ). The results involve some identities with a cohomological flavour satisfied
by unitary vector fields.
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We start with a technical result that is a consequence of formula 5. This lemma
will be extensively used in the article.

Lemma 3.1. Let A ∈ N and let γ : (−ε, ε) −→ N be a smooth curve such that
γ(0) = A. Let X(t) = γ′(t), and let Y be a smooth vector field tangent to N defined
in an open neighborhood of A. Denote by Y (t) = Y (γ(t)). Then the derivative of∫
Y (t)dµγ(t) with respect to the parameter t is

d

dt

∫
Y (t)dµγ(t) =

∫
dY (t)

dt
dµγ(t) +

∫
Y (t)X(t)dµγ(t)

for every t ∈ (−ε, ε).

Proof. The idea of the proof is very simple and based on the fact that the function
Q : χ(N )×mT −→ R given by

Q(X,µ) =

∫
Xdµ

is a bilinear form, where χ(N ) is the set of C1 vector fields tangent to N and mT

is the set of invariant measures of the map T . So the derivative of a function of the
type Q(X(t), µ(t)) satisfies a sort of Leibnitz rule. Let us check.

Let us calculate the derivative at t = 0, for every other t ∈ (−ε, ε) the calculation
is analogous. We have

d

dt

∫
Y (t)dµγ(t) |t=0 = lim

t→0

1

t
(

∫
Y (t)dµγ(t) −

∫
Y (0)dµA)

=

∫
lim
t→0

1

t
(Y (t)− Y (0))dµγ(t)

+ lim
t→0

1

t
(

∫
Y (0)dµγ(t) −

∫
Y (0)dµA)

=

∫
dY (t)

dt
dµA + lim

t→0

1

t
(

∫
Y (0)dµA+tX(0) −

∫
Y (0)dµA)

where in the last step we use the fact that the derivative with respect to t only
depends on the vector X(0) and not on the curve through A tangent to X(0). By
equation 5 the second term in the above equality is just d

dt

∫
Y (0)dµA+tX(0) |t=0,

which equals
∫
X(0)Y (0)dµA+tX(0). This finishes the proof of the lemma.

�

From now on, we shall adopt the notations dY
dt = Y ′ = Yt, the first one applies

when there is only one parameter involved in the calculations, the second one will
be used otherwise.

Lemma 3.2. Let γ(t) be a smooth curve of normalized potentials such that γ′(t) =
X(t), for all t, has constant energy. Then the following formula holds in γ(t):

(14)

∫
d

dt
(X ′ +

1

2
X2)dµγ(t) = 0.

Proof. The constant energy assumption implies that
∫
X2(t)dµγ(t) = c for every

t in the domain of γ(t). The constraint
∫
X(t)dµγ(t) = 0 for the tangent vectors

of curves in the manifold of normalized potentials gives, by taking derivatives and
applying Lemma 3.1, the equality



8 ARTUR O. LOPES AND RAFAEL O. RUGGIERO

0 =
d

dt

∫
X(t)dµγ(t) =

∫
(X ′ +X2(t))dµγ(t)

So we get
∫
X ′(t)dµγ(t) = −c and hence, taking again derivatives and applying

Lemma 3.1

d

dt

∫
X ′(t)dµγ(t) = 0 =

∫
(X ′′ +X ′X)dµγ(t) =

∫
d

dt
(X ′ +

1

2
X2)dµγ(t).

This proves the Lemma.
�

Corollary 3.3. Let γ : (−a, a) −→ N be an analytic curve of normalized potentials
such that γ′(t) = X(t), for all t, has energy equal to 1. Then there exist a Hölder
function c, and an analytic curve h(s), s ∈ (−a, a) of Hölder functions with the
following properties:

(1) X ′(t) + 1
2X

2(t) = c+
∫ t

0
h(r)dr

(2)
∫
h(t)dµγ(t) = 0 for every t ∈ (−a, a),

(3)
∫
cdµγ(t) = − 1

2 for every t ∈ (−a, a).

Proof. By Lemma 3.2 we know that
∫

d
dt (X

′ + 1
2X

2)dµγ(t) = 0, so the function

h(t) =
d

dt
(X ′ +

1

2
X2)

is an analytic function of t such that
∫
h(t)dµγ(t) = 0 for every t ∈ (−a, a). By the

first fundamental Theorem of Calculus, there exists a function c such that

X ′(t) +
1

2
X2(t) = c+

∫ t

0

h(r)dr.

As we already noticed in the proof of Lemma 3.2,
∫
X ′(t)dµγ(t) = −1, if

∫
X2(t)dµγ(t) =

1, for every t ∈ (−a, a). Therefore,∫
(X ′ +

1

2
X2)dµγ(t) = −1

2
=

∫
cdµγ(t),

for every t ∈ (−a, a), since
∫

(
∫ t

0
h(r)dr)dµγ(t) = 0. This finishes the proof of the

Corollary.
�

Lemma 3.4. Let A be a normalized potential, and let S : (−ε, ε) × (−δ, δ) −→ N
be an analytic local surface parametrized in Fermi coordinates with S(0, 0) = A,
X̄ = ∂

∂t , Y = ∂
∂s , and X = X̄(A). Then we have:

(1) There exist an analytic curve of Hölder functions g(t), t ∈ (−ε, ε), and
analytic functions qt(s), for (t, s) ∈ (−ε, ε)× (−δ, δ), such that

Ys +
1

2
Y 2 = g(t) +

∫ s

0

qt(r)dr.

The function g(t) satisfies
∫
g(t)dµP = − 1

2 and the functions qt(s) have
zero mean with respect to dµP , P = S(t, s).
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(2) There exist an analytic curve of Hölder functions f(t) for t ∈ (−ε, ε), and
an analytic family of functions pt(s), both f(t) and pt(s) with zero mean
with respect to µP , for P = S(t, s), such that

(15) Yt +
1

2
Y X̄ = f(t) +

∫ s

0

pt(r)dr.

Moreover, the vector field Yt satisfies
∫
YtdµP = 0 for every P ∈ S(t, s).

(3) There exist an analytic curve of Hölder functions b(t) and a Hölder function
C, t ∈ (−ε, ε), such that along the geodesic γ(t) we have

(16) X̄s +
1

2
Y X̄ = C +

∫ t

0

b(r)dr,

where
∫
Cdµγ(t) =

∫
b(t)dµγ(t) = 0 for every t ∈ (−ε, ε).

Proof. The vector field Y is geodesic and normalized, 〈Y, Y 〉 = 1 in the parameter-
ized surface defined by the Fermi coordinates. So Corollary 3.3 implies item (1) for
the geodesics tangent to the Fermi vector field Y . Since these geodesics cover the
local surface S(t, s), we have that

∫
g(t)dµP = − 1

2 and
∫
qt(s)dµP = 0 for every

P = S(t, s).
Moreover, by Lemma 2.4 we have that 〈X̄, Y 〉 = 0 in the parametrized surface.

So by Lemma 3.1 we have

∂

∂t
〈Y, Y 〉 = 0 = 2

∫
Y × (Yt +

1

2
X̄Y )dµP

for every point P in the parametrized surface. By the previous equation we get

(17) 0 =

∫
Y ×(Yt+

1

2
X̄Y )dµP =

∂

∂s

∫
(Yt+

1

2
X̄Y )dµP −

∫
∂

∂s
(Yt+

1

2
X̄Y )dµP .

Claim: The vector field Yt has vanishing mean.

Indeed, we already have that
∫
Y dµP = 0 for every P in the surface, so taking

derivatives with respect to t and applying Lemma 3.1:

0 =
∂

∂t

∫
Y dµP =

∫
YtdµP +

∫
X̄Y dµP =

∫
YtdµP + 〈X̄, Y 〉 =

∫
YtdµP ,

thus proving the Claim.

From equation 17, the Claim and the fact that
∫
X̄Y dµP = 〈X̄, Y 〉P = 0, we

deduce that

(18)

∫
∂

∂s
(Yt +

1

2
X̄Y )dµP = 0,

therefore the function (Yt + 1
2X̄Y ) and its derivative with respect to s must have

zero means. The fundamental Theorem of Calculus implies that there exist f(t)
and pt(s) analytic in t, s such that

Yt +
1

2
X̄Y = f(t) +

∫ s

0

pt(r)dr

where pt(r) = ∂
∂s (Yt + 1

2X̄Y ). The functions pt(s) have zero mean for every t, s,

and since
∫

(Yt + 1
2X̄Y )dµP = 0 for every P = S(t, s) we get that

∫
f(t)dµP = 0

for every P = S(t, s).
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To show item (3) we just interchange the roles of X̄ and Y just along the geodesic
γ(t) (because X̄ is not necessarily geodesic in the local surface S). Since X̄ = X
along γ(t) we get an expression similar to the one in item (2) for Xs:

X̄s +
1

2
X̄Y = C +

∫ t

0

b(r)dr

along γ(t) for every t ∈ (−ε, ε). This finishes the proof of the Lemma. �

4. On the sectional curvatures of the Riemannian metric

The goal of the section is to calculate the sectional curvatures of the Riemannian
metric in N .

Theorem 4.1. Let A be a normalized potential, and let S : (−ε, ε)× (−δ, δ) −→ N
be a local surface parametrized in Fermi coordinates with S(0, 0) = A, X̄ = ∂

∂t ,

Y = ∂
∂s , and X = X̄(A). Then the sectional curvature K(X,Y ) at A is

(19) K(X,Y ) =

∫
f2dµA,

where f is the function defined equation 15 at time t = 0. So it is always nonneg-
ative.

We assume the existence of geodesics that will be proved on section 5.
According to Lemma 2.5, we have that the sectional curvature of a plane gener-

ated by two unit vectors X,Y tangent to N at a normalized potential A is

(20) K(X,Y ) = −1

2
Y (Y (‖ X ‖)2).

To estimate this function we shall need some preparatory lemmas. Let us first
define some notations. Let X̄t be the derivative of the vector field X̄ with respect
to the parameter t and X̄s be the derivative of the vector field X̄ with respect to
the parameter s. The same convention applies to Yt, Ys. The notations X̄(Y ) =
∂
∂tY = Yt will always represent derivatives with respect to the vector field X, while

X̄Y or X̄ × (Y ) will represent the product of the functions X and Y . Through the
section this double character of the vectors tangent to the manifold N which are
also functions will show up in all statements and proofs.

Lemma 4.2. We have that X̄s = Yt in the local surface S.

Proof. This is due to the fact that the vector fields X̄, Y commute in S, so

0 = [X̄, Y ] = X̄(Y )− Y (X̄) = Yt − X̄s.

�

Lemma 4.3. Let Yt + 1
2Y X̄ = G = X̄s + 1

2X̄Y be the equation defined in Lemma
3.4. The following identity holds in the surface S(t, s):

(21) Y

∫
X̄2dµ = 2

∫
X̄X̄sdµ+

∫
Y X̄2dµ = 2

∫
X̄Gdµ

Proof. By Lemma 4.2 we know that X̄s = Yt so the functions G = Yt + 1
2Y X̄ and

H = X̄s + 1
2Y X̄ coincide. By the Leibnitz rule (Lemma 3.1) we have
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Y

∫
X̄2dµ = 2

∫
X̄X̄sdµ+

∫
Y X̄2dµ = 2

∫
X̄ × (X̄s +

1

2
X̄Y )dµ = 2

∫
X̄Gdµ

thus proving the Lemma.
�

Lemma 4.4. Let Yt + 1
2X̄Y = G(t, s) = f(t) +

∫ s
0
pt(r)dr,Xs + 1

2X̄Y = H =

C +
∫ t

0
b(r)dr be the functions in S(t, s) defined in Lemma 3.4 item (2). Then∫

fdµ = 0,
∫
Gdµ = 0 in S(t, s) and moreover,

(1)
∫
Gsdµ = 0,

∫
ftdµ = 0,

(2)
∫
Y Gdµ = 0,

∫
Xfdµ = 0,

(3)
∫
X̄Y Gdµ = −2

∫
G2dµ = −2

∫
f2dµ

(4)
∫
Y Gtdµ = 0 and

∫
X̄sGdµ = 0

at the points of γ(t) = S(t, 0).

Proof. Indeed, by Lemma 3.4 item (2) we already knew that
∫
fdµ = 0,

∫
Gdµ = 0

in the local surface S(t, s). Moreover, since Gs = pt we also have that
∫
Gsdµ = 0

which is item (1). Since by Lemma 4.2 Xs = Yt we have that H = G and therefore,

f(t) = C +
∫ t

0
b(r)dr along the geodesic γ(t). This implies that ft = b(t) and hence∫

ftdµ0 at the points of γ(t).
Now, to show item (2), observe that

0 = Y

∫
Gdµ =

∫
Y Gdµ+

∫
Gsdµ

so by item (1) we get
∫
Y Gdµ = 0 at the points of γ(t). Analogously,

∫
Xfdµ = 0

along γ(t) and item (2) proceeds.
To show item (3) notice first that Z = GX̄ is tangent to N at γ(t) because∫
XGdµ = 0. Moreover, since G = f depends only on t the vector field Z = GX̄ is

a reparametrization of the vector field X̄ along γ(t): Z(t) = X̄(
∫ t

0
g(r)dr, 0). This

follows from the chain rule: given a smooth function σ : N −→ R we have that the
derivative of σ with respect to Z is

Z(σ) =
dσ

dt
= g(t)X̄(σ).

So we can apply Lemma 3.1 to get

(22)

∫
X̄Y Gdµ = (GX̄)

∫
Y dµ−

∫
(Y )GX̄dµ = −

∫
GYtdµ

along γ(t), where YGX is the derivative of Y with respect to GX (recall that∫
Y dµ = 0). Moreover, by Lemma 3.4 item (2), equation (15), we have at the

points of γ(t) ∫
GYtdµ =

∫
f × (−X̄Y

2
+G)dµ

= −1

2

∫
X̄Y Gdµ+

∫
f2dµ

so replacing this equality in equation 22 we get item (3).
Item (4) is a byproduct of item (3), since by the Leibnitz rule and equation 22

we have
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∫
X̄Y Gdµ = X̄

∫
Y Gdµ−

∫
YtGdµ−

∫
Y Gtdµ = −

∫
YtGdµ

and we know by item (2) that
∫
Y Gdµ = 0 along γ(t), so its derivative with respect

to X̄ vanishes. This yields item (4).
�

Corollary 4.5. Following the notations of Lemma 4.4, we have that

1

2
Y (Y

∫
X̄2dµ) = Y

∫
X̄Gdµ =

∫
X̄Gsdµ+

∫
X̄Y Gdµ

at the points of the geodesic γ(t) = S(t, 0).

Proof. We just apply the Leibnitz rule and Lemma 4.4 to get

1

2
Y (Y

∫
X̄2dµ) = Y

∫
X̄Gdµ

=

∫
X̄sGdµ+

∫
X̄Gsdµ+

∫
X̄Y Gdµ

=

∫
X̄Gsdµ+

∫
X̄Y Gdµ

at the points of γ(t). �

Lemma 4.6. Let Q = Ys + 1
2Y

2 be the function defined in Lemma 3.4 item (1).
The following assertions hold at the point A = γ(0):

(1)
∫
Qdµ =

∫
Qsdµ =

∫
Qtdµ = 0

(2)
∫
X̄Qdµ =

∫
Y Qdµ = 0

(3)
∫
X̄2Qdµ = 0.

(4)
∫
X̄Qtdµ = 0.

Proof. The proof is quite analogous to the proof of Lemma 4.4 since the functions
Q and G have similar properties. We already know that

∫
Qdµ = 0 in the local

surface S(t, s) by Lemma 3.4. Moreover, since Q = g(t) +
∫ s

0
qt(r)dr and therefore,

Qs = qt(s), we have that
∫
Qsdµ =

∫
qt(s)dµ = 0 in S(t, s) by Lemma 3.4.

To see that
∫
Qtdµ = 0, notice that Qt = Yst + Y Yt, so∫

Ystdµ =

∫
Ytsdµ = Y

∫
Ytdµ−

∫
Y Ytdµ = −

∫
Y Ytdµ

since we know that
∫
Ytdµ = 0 in the surface S(t, s). Hence,

∫
Qtdµ = 0 as we

claimed.
Item (2) is straightforward from item (1):∫

X̄Qdµ = X̄

∫
Qdµ−

∫
Qtdµ = 0

and ∫
Y Qdµ = Y

∫
Qdµ−

∫
Qsdµ = 0

To prove item (3) we proceed as in the proof of Lemma 4.4. The function QX̄ is
tangent to S(t, s) and restricted to the geodesic γ(t) it is a reparametrization of the
vector field X. So at the points of γ(t) we have∫

X2Qdµ =

∫
(QX)Xdµ = (QX)

∫
Xdµ−

∫
XQXdµ = −

∫
QXtdµ
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since we know that
∫
X̄dµ = 0 in the surface S(t, s). This implies that

∫
X̄Qtdµ = 0

along γ(t) since∫
X2Qdµ = X̄

∫
X̄Qdµ−

∫
X̄tQdµ−

∫
X̄Qtdµ

= −
∫
X̄tQdµ−

∫
X̄Qtdµ

where in the last equality we applied item (2). This is actually the proof of item (4).
Now, let X̄T

t be the projection of X̄t in the tangent space of S(t, s). Since
∫
X̄tQdµ

is the inner product of the functions X̄t and Q we have that
∫
X̄tQdµ =

∫
X̄T
t Qdµ.

Let X̄T
t = aX + bY at the point A = γ(0). Then∫

X̄tQdµ = a

∫
X̄Qdµ+ b

∫
Y Qdµ = 0

by item (2), thus proving item (3) and the lemma. �

Proof of Theorem 4.1

By Corollary 4.5 we have that

1

2
Y (Y

∫
X̄2dµ) =

∫
X̄Gsdµ+

∫
X̄Y Gdµ

=

∫
X̄ × (X̄s +

1

2
X̄Y )dµ+

∫
X̄Y Gdµ

=

∫
X̄X̄ssdµ+

1

2

∫
X̄X̄sY dµ+

1

2

∫
YsX̄

2dµ+

∫
X̄Y Gdµ

By Lemma 4.2 we have that∫
X̄X̄ssdµ =

∫
X̄Ytsdµ =

∫
X̄Ystdµ

which gives ∫
XYstdµ =

∫
X × (−1

2
Y 2 +Q)tdµ(23)

= −
∫
XY Ytdµ+

∫
XQtdµ(24)

= −
∫
XYXsdµ(25)

where in the last equality we applied Lemma 4.6 item (4).
Moreover, we have∫

YsX
2dµ =

∫
X2 × (−1

2
Y 2 +Q)dµ(26)

= −1

2

∫
X2Y 2dµ+

∫
X2Q(27)

= −1

2

∫
X2Y 2dµ(28)
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where we applied item (3) of Lemma 4.6 to get the last equation. Replacing equa-
tions (25) and (28) in the expression of 1

2Y (Y
∫
X2dµ) we obtain

1

2
Y (Y

∫
X2dµ) = −1

2

∫
XYXsdµ−

1

4

∫
X2Y 2dµ+

∫
XYGdµ

Since we have that∫
XYXsdµ =

∫
XY × (−1

2
XY +G)dµ = −1

2

∫
X2Y 2dµ+

∫
XYGdµ

we conclude

1

2
Y (Y

∫
X2dµ) =

1

2

∫
XYGdµ

= −
∫
G2dµ

at the points of γ(t) by Lemma 4.4 item (3). Since the sectional curvature K(X,Y )
at A = γ(0) is − 1

2Y (Y
∫
X2dµ and G = f at the points of γ(t) we get Theorem

4.1.

5. The geodesics of the space of normalized potentials

The goal of the section is to show Theorems 2.1 and 2.2. Namely, given an
element A ∈ N , and a vector X ∈ TAN , we shall show that there exists a geodesic
γ(t) in the space such that γ(0) = A, γ′(0) = X(0) = X, and that the parallel
transport of vectors along γ(t) is well defined. Since the manifold of normalized
potentials is an infinite dimensional manifold, the usual way of proving the existence
of geodesics via solutions of an ordinary differential equations with coefficients in
the set of Cristoffel symbols may not proceed.

One of the most common approaches to the problem of existence of geodesics in
Hilbert manifolds is to show the Palais-Smale condition (see [11]) for the Riemann-
ian metric. This is an issue in infinite dimensional Lagrangian calculus of variations:
the Palais-Smale condition depends very much on each particular Riemannian met-
ric and in our case it is not clear that such a condition is satisfied (anyway, we
will not use it in the classical form). However, what we shall show is in some
sense a weak Palais-Smale condition for our Riemannian manifold: roughly speak-
ing, we shall construct a sequence of approximated solutions of the Euler-Lagrange
equation having as a limit a true solution of the equation.

We would like to point out that we will not use any of the classical results on
Hilbert manifolds.

We shall develop a strategy to prove the existence of geodesics under the following
assumption: there exists a countable basis {vn}, n ∈ N, of tangent vectors in each
tangent space TAN . We know that in every Banach space, the existence of a
countable, dense subset gives a countable basis, so the above assumption holds
for instance if our dynamics acts on a smooth manifold (the space of polynomial
functions is dense for instance). This will do the job in the case M = S1.

Remark 1: When M = {1, 2..., d}N and µ the equilibrium probability for a
Holder potential A it was shown in Theorem 3.5 in [10] that there exist a (countable)
complete orthogonal set ϕn, n ∈ N, on L2(µA).
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Definition 5.1. Let (X, |.|) and (Y, |.|) Banach spaces and V an open subset of
X. Given k ∈ N, a function F : V → Y is called k-differentiable in x, if for each
j = 1, ..., k, there exists a j-linear bounded transformation

DjF (x) : X ×X × ...×X︸ ︷︷ ︸
j

→ Y,

such that,

Dj−1F (x+vj)(v1, ..., vj−1) − Dj−1F (x)(v1, ..., vj−1) = DjF (x)(v1, ..., vj)+oj(vj),

where

oj : X → Y, satisfies, lim
v→0

|oj(v)|Y
|v|X

= 0

By definition F has derivatives of all orders in V , if for any x ∈ V and any k ∈ N,
the function F is k-differentiable in x.

Definition 5.2. Let X,Y be Banach spaces and V an open subset of X. A function
F : V → X is called analytic on V , when F has derivatives of all orders in V , and
for each x ∈ V there exists an open neighborhood Vx of x in V , such that, for all
v ∈ Vx, we have that

F (x+ v) − F (x) =

∞∑
j=1

1

n!
DjF (x)vj ,

where DjF (x)vj = DjF (x)(v, ..., v) and DjF (x) is the j-th derivative of F in x.

Above we use the notation of section 3.2 in [12].

N can be expressed locally in coordinates via analytic charts (see [13]).

5.1. Some more estimates from Thermodynamic Formalism. Given a po-
tential B ∈ Hol we consider the associated Ruelle operator LB and the correspond-
ing main eigenvalue λB and eigenfunction hB .

The function

(29) Π(B) = B + log(hB)− log(hB(T ))− log(λB)

describes the projection of the space of potentials B on Hol onto the analytic
manifold of normalized potentials N .

We identify below TAN with the affine subspace {A+X : X ∈ TAN}.
The function Π is analytic (see [13]) and therefore has first and second derivatives.

Given the potential B, then DBΠ should be considered as linear map from Hol to
itself (with the Holder norm on Hol). Moreover, the second derivative D2

BΠ should
be interpreted as a bilinear form from Hol × Hol to Hol.

When B is normalized the eigenvalue is 1 and the eigenfunction is equal to 1. We
would like to study the geometry of the projection Π restricted to the tangent space
TAN into the manifold N (namely, to get bounds for its first and second derivatives
with respect to the potential viewed as a variable) for a given normalized potential
A.

The space TAN is a linear subspace of functions and the derivative map DΠ is
analytic when restricted to it. The goal of the subsection is to estimate the first
and second derivatives of Π restricted to TAN in a small neighborhood of A in
the sup norm. This is of course linked to the geometry of the transfer operator in
a small neighborhood of a normalized potential A. The geometry of Π |TAN will
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be important to show the existence of geodesics as we shall see in the forthcoming
subsections.

To get such estimates we recall some well known results of the analytic theory
of the Ruelle operator.

Proposition 5.3. Given a normalized potential A ∈ N and δ > 0 there exists
r > 0, such that, for every Hölder continuous function B in the ball Br(A) of
radius r around A, the norms of DBΠ and D2

BΠ restricted to the functions in TAN
satisfy

‖ (DBΠ) |TAN −I ‖≤ δ

‖ (D2
BΠ) |TAN ‖≤ 1 + δ.

In the above for linear operators we use the operator norm (in Hol we consider
the sup norm) and for bilinear forms we use also the sup norm (see section 2.3 in
[13]).

Proposition 5.3 is perhaps well known, we sketch its proof for the sake of com-
pleteness. Let us recall some well known results of the theory of the transfer oper-
ator.

The following results are taken from Theorem 3.5 in [12] and Theorems A, B, C
in [5].

Lemma 5.4. Let Λ : Hol −→ R, H : Hol −→ Hol be given, respectively, by
Λ(B) = λB , H(B) = hB. Then we have

(1) The maps Λ, H, and A −→ µA are differentiable.
(2) DB log(Λ)(ψ) =

∫
ψdµB ,

(3) D2
B log(Λ)(η, ψ) =

∫
ηψdµB , where ψ, η are L2 functions.

(4) DAH(X) = hA
∫

[ (I − LT,A)−1 (1− hA) ]. X) dµA.
(5) If A is a normalized potential, then for every function X ∈ TAN we have∫

XdµA = 0.

Remark 2: The expression of item (4) appears in an old ArXiv version of [5] (see
Proposition 4.6. in the 2012 version arXiv:1205.5361v1). Note that the derivative
linear operator X → DAH(X) is zero when A is normalized.

Remark 3: Note that item (2) implies by item (5) that DB log(Λ)(ψ) =∫
ψdµB = 0, when B is normalized and ψ ∈ TµB (N ).
Remark 4: Item (1) above means that for a fixed Holder function f the map

A→
∫
fdµA is differentiable on A (see theorem B in [5])

Questions related to second derivatives on Thermodynamic Formalism are con-
sidered in [8] and [16].

From the above lemma we deduce the following:

Lemma 5.5. Given a normalized potential A and δ ∈ (0, 1), there exists r > 0,
such that, for every Hölder continuous B in the C0 ball Br(A) of radius r centered
at A, we have that the L2 norms of DBΛ, DBH and D2

BΛ satisfy

(1) ‖ DBΛ |TAN ‖≤ δ,
(2) ‖ DBH |TAN ‖≤ δ,
(3) ‖ DBΠ |TAN −I ‖≤ δ,
(4) ‖ D2

BΛ |TAN ‖≤ 1 + δ, for every B ∈ Br(A) ∩ TAN .
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Proof. Since the map A −→ µA is analytic given ε > 0 there exists r > 0 such that
for every Hölder function X : S1 −→ R with unit norm with respect to µA we have

|
∫
XdµA −

∫
XdµB |< ε

for every Hölder function B in the ball Br(A) of radius r around A in the C0 topol-
ogy. Let X ∈ TAN , items (2) and (5) in Lemma 5.4 imply that DA log(Λ)(X) = 0,
and moreover,

| DA log(Λ)(X)−DB log(Λ)(X) |=|
∫
XdµB |< ε,

so the L2 norm of DB log(Λ) restricted to B(1, A, L2) - the L2 ball of radius 1 in Hol
with respect to the measure µA - is bounded above by ε supX∈B(1,A,L2)

∫
XdµB .

From this assertion follows the estimate for DBΛ.
The estimate for the second derivative of Λ follows from items (2) and (3) in

Lemma 5.4, since the second derivative of log(Λ) at B is just the L2 inner product
with respect to the measure dµB .

To show item (2), observe that according to item (4) in Lemma 5.4, for all x

‖ DBH(X) ‖≤ hB(x) ‖ (I − LT,A)−1 ‖∞‖ (1− hB) ‖∞‖ X ‖∞ .

Since A is a normalized potential, we have hA = 1 = λA and we can suppose that
in the ball Br(A) we also have | 1 − hB |< ε by the analyticity of the function H.
The operator (I − LT,A)−1 is uniformly bounded as well because of the spectral
gap of the operator LT,A. This yields that the norms ‖ ‖∞, ‖ ‖L1 , ‖ ‖L2 are
small for DBH, B ∈ Br(A).

The proof of item (3) is a consequence of the definition of Π and the already
proved items in the lemma.

�

Notice that item (3) in the previous lemma is the first inequality of Proposition
5.3. So it remains to show the second inequality.

In a future section we will need to control the second order derivative of the
function Π acting on Hölder potentials B close to a normalized potential A. On
that moment we will have to use the next lemma. We point out that the continuous
dependence (follows from analyticity) on all parameters which are involved on the
computations.

Lemma 5.6. Let A ∈ N , r > 0, Br(A) be given in Lemma 5.5. Then there exists
δ(r) > 0 small enough, such that, the second order derivative bilinear form of the
function

(30) B → Π(B) = B + log(hB)− log(hB(T ))− log λ(B)

restricted to TAN is δ(r)-close to the zero bilinear form in L2 for every B ∈ Br(A)∩
TAN .

Proof. Remember that when A is normalized Π(A) = A+ log(hA)− log(hA(T ))−
log λ(A) = A. Moreover, the first and second derivatives of Π on B are close to the
corresponding ones of A.

It is known that for a normalized potential A we have

DAΠ = I,
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where I is the identity.
Let us analyze the first derivative of Π at a point B ∈ Br(A) not necessarily

normalized and a variable increment ψ.
By the analyticity of H, and the fact that log(H(A)) − log(H(A)(T )) = 0 if A

is normalized, there exists δ1 > 0 small such that ‖ log(hB) − log(hB(T )) ‖∞< δ1
for every B ∈ Br(A).

We get from item (3) of Lemma 5.5

DBΠ ∼ I,
in L2 norm (the error of this approximation is bounded above by δ in Lemma 5.5).

We denote by ∂
∂ψΠ(B + ψ) = DBΠ(ψ) the derivative on the direction of the

tangent vector ψ.
Moreover, for the single increment ψ ∈ TAX we get (by the rule of the derivative

of the product)

∂

∂ψ
Π(B + ψ) = ψ +

∫
ψdµB +

∫
∂

∂ψ
(log hB+ψ − log hB+ψ ◦ T ) dµB +∫

(log hB+ψ − log hB+ψ ◦ T ) ψ dµB .

As we mentioned before (log hB+ψ − log hB+ψ ◦ T ) (and its first derivative) is
small when ψ is small by Lemma 5.5.

Now, we analyze the second derivative. For the pair of tangent vectors ψ,ϕ we
get (using the rule of the derivative of the product) the bilinear form

(ψ,ϕ) →
∫

∂

∂ψ

∂

∂ϕ
(log hB − log hB ◦ T ) dµB+∫

∂

∂ϕ
(log hB − log hB ◦ T ) ψ dµB +∫

∂

∂ψ
(log hB − log hB ◦ T ) ϕ dµB +∫

(log hB − log hB ◦ T ) ψ ϕ dµB .

The claim of the lemma follows from the following facts:
1) the first term of the sum above is zero by the coboundary property,
2) the linear derivative of B → (log hB− log hB ◦T ) is δr small (second and third

terms by Lemma 5.5),
3) (log hB− log hB ◦T ) is small when ψ and ϕ are small and close to a normalized

potential (fourth term).
�

5.2. The system of differential equations of geodesic vector fields. Let us
begin with the same ideas of the finite dimensional case. Suppose that γ(t) exists,
we are going to characterize γ in terms of a differential equation in the space N
that has a unique solution. Let X(t) = γ′(t), since it is geodesic, ∇XX = 0, where
∇ is the Levi-Civita connection of the Riemannian metric in N . Actually, we have
to show that this equation has a solution, we shall reduce this problem to solve
another differential equation. So we have that

(31) 〈∇XX,Y 〉 = 0,
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for every Y ∈ Tγ(t)N . By the compatibility properties of the Riemannian met-
ric and the covariant derivative (see (2) and (3) on properties of the Levi-Civita
connection in the beginning of section 2)

(32) 〈∇XX,Y 〉 = X〈X,Y 〉 − 1

2
Y 〈X,X〉 − 〈X, [X,Y ]〉,

where X(f) means the derivative of a scalar function f with respect to X.
In particular, the energy of geodesics is constant,

(33) 〈∇XX,X〉 = 0 =
1

2
X〈X,X〉 =

1

2

∫
(2XX ′ +X3)dµγ(t).

So let us restrict ourselves to the energy level of vector fields X with constant
norm equal to 1. In this case, the equation of geodesics and (32) gives

0 = 〈∇XX,Y 〉 = X〈X,Y 〉 − 〈X, [X,Y ]〉,
or equivalently,

(34) X〈X,Y 〉 = 〈X, [X,Y ]〉,
for every vector field Y . In particular, if the elements of the basis vn generate vector
fields we have

X〈X, vn〉 = 〈X, [X, vn]〉.
In the case where the vector fields vn correspond to a finite number of coordinate
vector fields this set of equations might be used to show the existence of the geodesic
vector field. Indeed, say that n ≤ m, then the above system of equations is equiv-
alent to a system of first order partial differential equations whose solution always
exists by the theory of characteristics. Let us write down the system explicitly.

Let Φ : Um −→ Vm, Φ(t1, t2, .., tm), be a coordinate system defined in an open
neighborhood of 0 ∈ Rm whose image is a smooth m-dimensional manifold in N
containing A. Let en be vector fields in Rm tangent to the coordinates tn, and let
vn = DΦ(en) define the coordinate vector fields in N .

Let X =
∑m
i=1 xivi, x̄i = 〈X, vi〉. The differential equation of the geodesic vector

field X is equivalent to

X〈X, vn〉 = 〈X, [X, vn]〉 = 〈X, [
m∑
i=1

xivi, vn]〉

and observe that

[

m∑
i=1

xivi, vn] =

m∑
i=1

[xivi, vn] =

m∑
i=1

(xi[vi, vn]− vn(xi)vi)

and since the vector fields vn commute we get

[

m∑
i=1

xivi, vn] =

m∑
i=1

−vn(xi)vi = −(

m∑
i=1

vn(xivi)) + xnv̄n = −vn(X) + xnv̄n

because the derivatives vn(vi) = d
dtn

vi are equal to 0 if n 6= i and where v̄n =

D2(Φ)(vn) if n = i. Hence we can write the differential equation for X as

X(x̄n) = X〈X, vn〉 = −〈X, vn(X)〉+ 〈X,xnv̄n〉.
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In terms of d
dt ,

d
dtn

we obtain a system Sm of first order partial differential
equations

Sm :=
d

dt
(x̄n) = −〈X, d

dtn
(X)〉+ 〈X,xnv̄n〉, n = 1, 2, ..,m.(35)

The above system of differential equations gives rise to a system of partial differ-
ential equations for the functions x̄i. Indeed, let X̄ = (x̄1, x̄2, .., x̄m), and let Mm

be the matrix of the first fundamental form in the basis vi, namely,

(Mm)ij = 〈vi, vj〉.

We have that X̄ = MmX, so X = M−1
m X̄. Replacing this identity in the initial

system (35) we get a system of first order, quasi-linear partial differential equa-
tions (see chapter 7 in [4] for definition and properties) for the functions x̄n whose
coefficients depend on the matrices M−1

m and d
dtn

(M−1
m ).

5.3. Uniform bounds for the PDE geodesic systems. A natural way to obtain
geodesics from the family of systems Sm would be to solve each of the systems with
a given initial condition and take the limit m→∞. A limit function would be the
desired geodesic. However, the limit process might not give any limit function, this
depends on uniform bounds for the coefficients of the matrices Mm. This is the
subject of the next lemma which considers the case M = S1 where it is well known
the existence of a countable basis (independent of the equilibrium probability).

For the case when M is the symbolic space we shall use the Remark 1 on section
5 and the next lemma will work in a similar way.

Lemma 5.7. Let A : S1 → R be normalized potential and the function B ∈ Br(A)
(where Br(A) is the open neighborhood of A given in Proposition 5.3). Let fn be
any countable basis of analytic functions of the circle (interval) in the L2 norm,
and let

f̄n = fn −
∫
fndµA.

Then,

(1) The set of functions f̄n is a basis of TAN .
(2) Let en be an orthonormal basis of TAN obtained from f̄n (via Gram-

Schmidt). Then, the functions

vn(B) = DBΠ(en)

form a basis for TBN and

| 〈vn(B), vm(B)〉 − δnm |≤ δ

where δnm is the Kronecker function : δnm = 1 if n = m, and 0 otherwise.
(3) There exists b > 0 such that map Π restricted to the sets

Um = {
m∑
i=1

tiei, | ti |< b}

is an embedding into a m-dimensional submanifold Vm ⊂ N .

Proof. The map f → f −
∫
fdµA is a linear map from the set of functions to TAN .

Therefore, if fn is a basis of the set of functions the image of the set {fn} by this
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linear map is a basis in the image of the map, that is precisely TAN . From the
basis f̄n we can of course obtain an orthonormal basis en by Gram-Schmidt.

From Proposition 5.3, we know that DAΠ |TAA= I and that DBΠ |TAA is close
to the identity if B ∈ Br(A). Hence, if we chose B = A+

∑m
i=1 tiwi in a way that

‖ B − A ‖< r then the vectors vn(B) = DBΠ(en) will be almost perpendicular
at TBN . This yields that the vectors vn(B) are linearly independent in TBN and
therefore, the map Π has constant rank m in Um. By the local form of immersions,
the image Vm = Π(Um) is an analytic submanifold of N of dimension m. �

By virtue of Lemma 5.7, we shall consider the collection of m-dimensional coor-
dinate systems given by the restrictions of Π to the sets Um. Let us estimate the
norms of the associated matrices Mm, M−1

m and its derivatives.

Lemma 5.8. There exists C > 0 such that the norms of the matrices M−1
m ,

d
dtn

(M−1) are uniformly bounded by C in the neighborhood Br(A).

Proof. The coefficients of the first fundamental form Mm at a point B ∈ Br(A) are

〈vi(B), vj(B)〉 =

∫
vi(B)vj(B)dµB .

By Lemma 5.7 and Lemma 5.6, the matrix Mm is a perturbation of the identity
at every point B ∈ Br(A). This yields that the norm of M−1

m is uniformly bounded
above in Br(A).

The derivative ofM−1
m with respect to tn is−M−1

m
d
dtn

(Mm)M−1
m . The derivatives

at B ∈ Br(A) of the coefficients of Mm are determined by the derivatives of the
terms 〈vi, vj〉. We have

d

dtn
〈vi, vj〉 =

∫
(
d

dtn
(vi)vj + vi

d

dtn
(vj) + vivjvn)dµB

by the definition of the Riemannian metric. The norms of the terms in the equation
are bounded by the products of the norms of D2(Π), vi, vj , vn, which have uniform
bounds according to Proposition 5.3.

�

5.4. First order systems of ordinary differential equations equivalent to
first order PDE’s. Let us start this subsection with some standard basic results
of the theory of first order partial differential equations. We follow the book by L.
C. Evans [7] Chapter n. 3 but the subject is quite well known and there are many
classical references.

Let F : Rn × R × Ū :−→ R be a C2 function where U is an open subset of Rn
and Ū is its closure. The system of first order, partial differential equations defined
by F is given by

F (Du, u, x) = 0

where u : Ū −→ R is the unknown. Let us write

F (p, z, x) = F (p1, p2, .., pn, z, x1, x2, .., xn)

and denote by

DpF = (Fp1 , Fp2 , .., Fpn), DzF = Fz, DxF = (Fx1
, Fx2

, .., Dxn)

the differentials of F with respect to the variables p, z, x. The theory of the
characteristics associates a system of first order differential equations to the sys-
tem F (Du, u, x) = 0 in the following way. We look for smooth curves x(s) =
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(x1(s), .., xn(s)) for s ∈ I defined in some open interval, and consider the function
z(s) = u(x(s)). Let p(s) = Du(x(s)), where p(s) = (p1(s), .., pn(s)) is given by
pi(s) = uxi(x(s)). Differentiating with respect to s we obtain the characteristic
equations

p′(s) = −DxF (p(s), z(s), x(s))−DzF (P (s), z(s), x(s))p(s)

z′(s) = DpF (p(s), z(s), x(s))p(s)

x′(s) = DpF (p(s), z(s), x(s))

This setting extends of course to smooth finite dimensional manifolds, by taking
local coordinate systems.

Euler-Lagrange equations in a Riemannian manifold, a system of second order
differential equations, is equivalent to a first order system of partial differential
equations in the tangent bundle of the manifold. The above procedure applied to
this system gives rise to the Hamilton equations in the cotangent bundle, a system
of ordinary first order differential equations.

Euler-Lagrange equations in the case of Riemannian metrics are expressed in
terms of the Levi-Civita connection by the system

〈∇XX, ei〉 = 0

where X is the vector field tangent to a geodesic and ei, i = 1, 2, .., n is a coordinate
basis of the tangent space of the n-dimensional manifold. This is exactly what we
did in the previous subsection. The tangent space TN and the cotangent space
T ∗N of N are analytic manifolds as well, and we are looking for solutions of Euler-
Lagrange equations in finite dimensional submanifolds of TN .

Therefore, as a consequence of Lemma 5.8 and Theorem 6.4 in the last section we
get an existence of solutions result for the partial differential equation of geodesics.

Lemma 5.9. Under the assumptions of Lemma 5.8, there exist ρ > 0, D > 0,
such that given a unit vector X(0) ∈ TAN there exists a unique analytic curve
γ : (−ρ, ρ) −→ N such that γ(0) = A, and γ′(t) = X(t) is the unique solution
of the equation (35) whose initial condition is X(0). The solution X(t) is defined
in an interval | t |≤ ρ, and the norms of X(t), X ′(t) are bounded by D for every
| t |≤ ρ.

Proof. By the theory of first order partial differential equations, the system (35)
that is a second order, partial differential system in the curve γ(t) is equivalent
to a system of first order ordinary differential equations d

dtY = Fm(Y ) where the
function Fm depends on the first fundamental form A and its derivatives with
respect to the coordinates tn. These functions have uniformly bounded norm in
the neighborhood B(r) and are analytic. Then, Theorem 6.4 implies the existence
and uniqueness of solutions of the ordinary differential equations, namely, there
exists ρ > 0 such that the solution γm(t) of (1) with initial condition γm(0) = A,
γ′m(0) = X(0), is unique and defined in (−ρ, ρ).

d

dt
‖ Y ‖≤‖ F ‖‖ Y ‖

which yields that
The uniform bound for the sup norm of Fm in B(r) implies that there exists ρ > 0

such that the analyitic solutions γm(t) are defined in (−ρ, ρ) and are uniformly
bounded in this interval.
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Then Theorem 6.3 implies that there exists a convergent subsequence with limit
γ(t) analytic in the interval (−ρ, ρ). The function γ(t) is tangent to the curve of
vectors X(t) that s the limit of the convergent subsequence of the curves γ′m(t) =
Xm(t) in (−ρ, ρ).

Claim: The curve γ(t) is a geodesic.

Since Xm(t) converges uniformly to X(t) in the interval (−ρ, ρ) we have that
given ε > 0 there exists mε such that for every m ≥ mε we have

‖ Fm(X ′m(t))− Fm(X(t)) ‖∞≤ k ‖ Xm(t))−X(t) ‖∞≤ ε

where k is a constant depending on the (unform) bounds of the first derivatives of
the funcitons Fm. So we get that X(t) is an approximate solution of the systems
defined by the functions Fm:

‖ X ′ − Fm(X) ‖∞ ≤ ‖ X ′ −X ′m ‖∞ + ‖ X ′m − Fm(Xm) ‖∞ + ‖ Fm(Xm − Fm(X) ‖∞
≤ 2ε

if we choose mε such that ‖ X ′m−X ′ ‖∞< ε for every m ≥ mε as well. Now, notice
that the equation d

dtY = Fm(Y ) is equivalent to the system 〈∇Y Y, vk〉 = 0, for
every 0 < k ≤ m, which means that

| 〈∇XX, vk〉 |≤ ε

for every 0 < k ≤ m. Since ε may be chosen arbitrarily, we conclude that
〈∇XX, vm〉 = 0 for every m, which implies that the vector field ∇XX is iden-
tically zero, because the collection of the vectors vm is a base for the L2 inner
product in TN . This yields that the curve γ(t) is a geodesic as we claimed.

�

5.5. Parallel transport and Fermi coordinates for local surfaces. The proof
of Theorem 2.2 is similar to the proof of Theorem 2.1, we shall sketch the proof in
some steps to avoid repetition of arguments. Let A ∈ N , X ∈ TAN , γ : (−ε, ε) −→
N the geodesic such that γ(0) = A, γ′(0) = X. Let γ′(t) = X(t), and consider a
countable basis en of TAN such that e1 = X.

Let us define a family of local n-dimensional submanifolds Sn of N in the fol-
lowing way. Let v : (−ε, ε) −→ TAN be the curve v(t) = (ΠA)−1(γ(t)), where
ΠA : TAN −→ N is the restriction of Π to TAN . Since ΠA is a local diffeomor-
phism in a small ball around 0 ∈ TAN the curve v(t) is analytic and tangent to X
at t = 0. Let us consider the subsets Wn of functions in TAN

Wn = ∪|ti|<ε{X(t1) +

n∑
i=2

tiei}.

It is a n-dimensional submanifold of functions whose tangent space at A contains
the vectors X, e2, .., en. Since DΠ is close to the identity in an open neighborhood
of TAN we have that

Sn = Π(Wn)

is a family of parametrized smooth n-dimensional submanifolds in N . Notice that
this family is slightly different from the family Vn considered in the previous sub-
section. The point is that the geodesic γ(t) now is a coordinate axis of Sn, t = t1
is the first coordinate of the parametrization. We can suppose that the coordinate
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tangent vector fields σn = Dv(t)Π(en) are perpendicular to X(t) = σ1(γ(t)) for
every t ∈ (−ε, ε) (otherwise we just orthogonalize them along γ(t)).

To find a local surface S parametrized in Fermi coordinates we start by choosing
a vector Y ∈ TAN , and we would like to solve the equation

(36) ∇X(t)Y (t) = 0,

where Y (t) is a vector field defined in γ(t) such that Y (0) = Y , which amounts to
solve the system of equations

〈∇XY, σn〉 = 0

in each Sn for every n. In the finite dimensional case, we can parametrize open
neighborhoods of the Riemannian manifold with Fermi coordinates. We are not
going to show that in our case (we do not need for the proof of Theorem 2.2).
However, we shall make the following assumption on Y (t) that is satisfied in the
finite dimensional case: Y is a vector field defined in an open neighborhood of A
which commutes with the coordinate vector fields σn at γ(t). If we show that the
above system has a solution under this hypothesis we find the parallel transport of
Y along γ(t) and Theorem 2.3 proceeds.

Let us orthogonalize the vector fields σn to get vector fields σ̄n that might not be
coordinate vector fields, although they are along γ(t). The vector fields σ̄n continue
to form a basis of TBN for B in an open neighborhood of A. The expression of the
parallel transport system in this base is, according to the equation of the Levi-Civita
connection,

(37) 〈∇XY, σ̄n〉 = 0 =
1

2
(X〈Y, σ̄n〉 − σ̄n〈X,Y 〉).

Let us consider the orthogonal projection Yn of Y in the subspace generated by
the vectors σ̄i, i = 1, 2, .., n. We have Yn =

∑n
i=1 yiσ̄i, for yi = 〈Y, σ̄i〉. Replacing

in the system we get

X(yn) =

n∑
i=1

σ̄n(yi〈X, σ̄i〉).

The functions 〈X, σ̄i〉 are known, and we can get from this system another system
in terms of the coordinate vector fields σi that is close to it (let us remind that
σi = σ̄i along γ). Both systems are first order, partial differential equations systems
with uniformly bounded coefficients by Proposition 5.3. As in the proof of Lemma
5.9, we get a family Yn(B) of solutions defined in an open neighborhood of A
because of Theorem 6.4, and letting n tend to ∞ we get a solution Y (t) for the
parallel transport of Y = Y (0) along γ(t) by Theorem 6.3.

6. On the existence and uniqueness of solutions of differential
equations in N

Let us now proceed to the proof of Picard’s Theorem in our infinite dimensional
setting. We start with the Arzela-Ascoli theorem. We shall state the main resuts for
the shift, for the expanding map T (x) = 2x(mod.1) in S1 the results are analogous.

Theorem 6.1. Let (X, d) be a second countable compact metric space (namely,
there exists a countable dense subset). Let F be a family of functions f : X −→ R
that is uniformly bounded and equicontinuous. Then every sequence in F has a
convergent subsequence in the set of continuous functions.
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Proof. The proof follows from the same steps of the usual version of the theorem
for compact subsets of Rn. �

This implies

Lemma 6.2. Let Σ = {0, 1}N, endowed with the metric

d({an}, {bn}) =
1

2

∞∑
i=0

| ai − bi |
2i

.

Let HolC,α(Σ) be the set of Hölder continuous functions f : Σ −→ R with constant
C and exponent α endowed with the sup norm. Then every subset of HolC,α of
uniformly bounded functions is precompact.

Proof. First of all, observe that (Σ, d) is a compact metric space with a countable
dense subset, the set of periodic sequences of 0’s and 1’s. Then Theorem 6.1 holds,
and since the set of functions in HolC,α is equicontinuous, every uniformly bounded
subset has a convergent subsequence. �

Next, let us study the precompactness of the set of analytic curves of normalized
potentials γ : (a, b) −→ HolC,α(X) endowed with the sup norm. Analytic means
that γ(t) depends analytically on the parameter t ∈ (a, b).

Proposition 6.3. Let ΓC,α([a, b],Σ) be the set of curves γ : [a, b] −→ HolC,α(Σ) of
normalized potentials which are analytic in (a, b) and continuous in [a, b], endowed
with the sup norm. Then every family of functions in ΓC.α([a, b],Σ) that is uni-
formly bounded and equicontinuous has a convergent subsequence. Namely, there
exists a continuous function γ∞ : [a, b] −→ HolC,α(Σ) that is analytic on (a, b) and
a sequence of functions in ΓC.α([a, b],Σ) converging uniformly to γ∞.

Proof. Let γn ∈ ΓC,α([a, b],Σ) be a sequence of uniformly bounded curves. For
simplicity, let us suppose that a = −r, b = r for some 0 < r ≤ 1, and let us center
the series expansion at t0 = 0 (for different center of expansion the argument is just
analogous). This implies that we get an expression in power series for each γn(t)
of the form

γn(t) =

∞∑
m=0

anm(p)tm

where anm : Σ −→ R are functions in HolC,α(Σ). Since the functions γn are uni-
formly bounded by a constant L > 0 in (−r, r), we have that ‖ an0 ‖∞≤ L for every

n and by Lemma 6.2 there exists a convergent subsequence a
n0
i
o whose limit is a

function A0. Since the radius of convergence of all the series is r, we have that
lim supn(| anm(p) |) 1

n = 1
r and therefore

‖ anm ‖∞≤
1

rm

for every n,m. So the family of functions Fm = {anm} is uniformly bounded and
we can apply again Lemma 6.2. So there exists a subsequence n0

n1
j

of the indices n0
j

such that the functions a
n0
j
m converge to a function A1 ∈ HolC,α(Σ). By induction,

we get a subsequence γNk of the functions γn such that the first k + 1 coefficients
of their series expansions converge to functions A0, A1, .., Ak in HolC,α(Σ).
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Consider the function

γ∞(t) =

∞∑
m=0

Am(t).

By the choice of the Am’s, the above series converges with the same convergence
radius of the functions γn. Moreover, it is easy to check that γ∞(t) is a curve of
functions in HolC,α(Σ), and we have that the sequence γNk converges uniformly on
compact sets to γ∞ in the sup norm. Indeed, let [a, b] ⊂ (−r, r), since the functions
γn are uniformly bounded given ε > 0 there exists mε > 0 such that for every
n ∈ N, k ≥ mε we have

|
∞∑
k

ank (p)tk |≤ ε

for every p ∈ Σ. The same holds for the series γ∞. This yields

‖ γ∞(t)− γn(t) ‖∞ ≤
mε∑
m=0

‖ Am − aNkm ‖∞ tm+ ‖
∞∑

mε+1

(Am − aNkm ) ‖∞ tm

≤
mε∑
m=0

‖ Am − anm ‖∞ tm + 2ε.

Since the functions aNkm converge uniformly to the function Am, we can chose k
large enough such that ‖ (Am − aNkm ) ‖∞≤ ε

m and therefore

‖ γ∞(t)− γn(t) ‖∞≤ 3ε

for every t ∈ [−r, r] and since ε can be chosen arbitrarily we get the lemma. �

Now, we can state Picard’s Theorem for differential equations in N .

Theorem 6.4. Let F : [x, y] × U −→ HolC,α(Σ) be an analytic function in t ∈
(x, y) and in HolC,α(Σ), where U is an open subset of (HolC,α(Σ))n. Then, given
(t0, f1, f2, .., fn) ∈ (x, y)×U there exists a unique solution of the differential equation
d
dtX(t) = F (t,X(t)) defined in a certain interval X : (t0 − ε, t0 + ε) −→ U that is
analytic and satisfies X(t0) = (f1, f2, .., fn).

Proof. The proof mimics the usual proof of Picard’s theorem applying the idea of
contracion operators. The operator

L(g)(t) = (f1, f2, .., fn) +

∫ t

t0

F (s, g(s))ds

is defined in the set of continuous curves g : [x, y] −→ (HolC,α(Σ))n that are
analytic on (x, y). According to Lemma 6.3, this set of curves endowed with the sup
norm is co-compact. Now, as in the proof of the usual version of Picard’s theorem,
there exists a small interval (t0 − ε, t0 + ε), where ε > 0 depends on the sup norm
of the first derivatives of the function F , where the above operator restricted to
curves defined in (t0 − ε, t0 + ε) is a contraction. Therefore, by Lemma 6.3, there
exists a unique fixed point X(t) that must be the solution of the equation claimed
in the statement. The solution is analytic in since the function F is analytic. �
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