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Mathematical cartography has had a prominent rôle in the early development of
differential geometry. It was Euler who first gave a proof of a fact that map-makers
had long realized in practice: there are no ideal map projections of an open subset of
the sphere onto an open subset of the plane. By an ideal map projection we mean a
map that preserves lengths, and hence all other relevant geometric properties, as angles
and areas. In other words, no open subset of the sphere can be isometrically mapped
onto an open subset of the plane. This was later clarified by Gauss Theorem Egregium,
which revealed the fundamental fact that preservation of curvature is an obstruction for
the existence of such a map between any two surfaces.

Gauss also realized that preservation of angles was then the crucial property of a
cartographic map, as he pointed out in a letter to Hansen from December 11, 1825:

You are quite right that the essential condition in every map projection is the infinites-
imal similarity; a condition that should be neglected only in very special cases of need.

In contrast to isometric maps, Gauss proved that there are no obstructions to con-
struct (local) analytic conformal (angle-preserving) maps from any analytic surface into
the plane. This also holds in the smooth case, but a proof of this fact only appeared
much later.

Another useful feature of a cartographic map of the sphere is that meridians and
parallels be represented by arcs of circles or straight lines. This has led Lagrange, as
early as 1779, to pose (and solve) the problem of determining all tracées geographiques
(angle-preserving mappings into the plane) of an open subset of the sphere such that
meridians (or parallels) are mapped into (arcs of) circles or straight lines.

In this note we give a proof of Lagrange’s theorem. Along the way we discuss
basic facts on conformal (angle-preserving) mappings, including the steoreographic and
Mercator map projections of the sphere, explain how the complex exponential map
shows up in connection with them, and introduce the model of Euclidean plane as a
paraboloid in the light cone of Lorentz space. We use the latter in order to give a simple
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proof of the characterization of ortogonal families of circles and straight lines in the
Euclidean plane, which is needed in the proof of Lagrange’s theorem.

1 Conformal mappings

A map f : S1 → S2 between two surfaces in R3 is said to be conformal if it preserves
angles. More precisely, given two smooth curves α, β: I ⊂ R → S1 with 0 ∈ I and
α(0) = p = β(0), the angle between v = α′(0) and w = β′(0) must coincide with
the angle between (f ◦ α)′(0) = df(p)(α′(0)) and (f ◦ β)′(0) = df(p)(β′(0)). Setting
T = df(p), this condition may be written as

〈Tv, Tw〉
|Tv||Tw|

=
〈v, w〉
|v||w|

for all v, w ∈ TpS1. (1)

It is easily seen that a linear map T : TpS1 → TpS2 satisfies (1) if and only if there exists
λ = λ(p) ∈ R such that

〈Tv, Tw〉 = λ〈v, w〉 for all v, w ∈ TpS1. (2)

In other words, a conformal map is an infinitesimal similarity . The function p 7→ λ(p)
is easily seen to be smooth, and is called the conformal factor of f . Notice that (2) is
satisfied if and only if for some (and hence for any) orthogonal basis {v, w} of TpS1 it
holds that T (v) and T (w) are orthogonal and satisfy

|Tv|
|v|

=
|Tw|
|w|

.

In particular, a map f = (u, v): U ⊂ R2 → R2 is conformal if and only if the
vectors df(e1) = (ux, vx) and df(e2) = (uy, vy) are orthogonal and have the same length.
Therefore, either ux = vy and vx = −uy or ux = −vy and vx = uy. In other words, a map
f = (u, v): U ⊂ R2 → R2 is conformal iff it is either holomorphic or anti-holomorphic,
according as it preserves or reverts orientation.

The holomorphic map f(z) = 1/z, z 6= 0, has one important additional property: it
maps circles and straight lines into circles or straight lines. This can be seen as follows:
the equation of any circle or straight line in R2 can be put into the form

A|z|2 +Bz̄ + B̄z + C = 0, (3)

where A and C are real and |B|2 ≥ AC, the case of a straight line corresponding to
A = 0. Dividing this equation by |z|2 gives

C|1/z|2 +B(1/z) + B̄(1/z̄) + A = 0,
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thus w = 1/z satisfies C|w|2 +Bw+ B̄w̄+A = 0, which is an equation of the same type
as (3).

The map I(z) = 1/z̄ = f(z), z 6= 0, is therefore an anti-holomorphic map that takes
circles and straight lines into circles or straight lines. It can be written as I(z) = z/|z|2,
so I(z) is characterized geometrically as the unique point in half-line line joining the
origin to z such that the distances |z| and |I(z)| from z and I(z), respectively, to the
origin, satisfy |z||I(z)| = 1. It is called the inversion with respect to the unit circle.
More generally,

Ir,z0(z) = z0 + r2(z − z0)/|z − z0|2

is the inversion with respect to the circle of radius r centered at z0. Check that Ir,z0
leaves lines through z0 invariant, takes circles through z0 onto lines not through z0 and
conversely, and circles not through z0 onto circles not through z0.

Another holomorphic function that will be of importance for us is the complex ex-
ponential function

exp(x+ iy) = ex(cos y + i sin y).

It maps each strip Uθ = R× (θ, θ+ 2π) diffeomorphically onto the complement C\Lθ of
the half-line through the origin that makes an angle θ with the x-axis. The inverse Log
of exp |U−π is called the principal branch of the complex logarithmic function. Notice
that exp maps coordinate lines x = x0 onto circles of radius ex0 and coordinate curves
y = y0 onto straight lines through the origin making an angle y0 with the x-axis.

2 Mercator and stereographic projections

There are two famous conformal maps of the sphere. The first one is the stereographic
projection, defined as follows. Take a unit sphere S2 in Euclidean space centered at the
origin. Then associate to each point (x, y, z) ∈ S2 \N , N = (0, 0, 1), the intersection of
the half-line joining N to (x, y, z) with the xy-plane. This is given by

π(x, y, z) = (0, 0, 1) + t(x, y, z − 1),

where t is determined so that 1 + t(z − 1) = 0. So t = 1/(1− z), which gives

π(x, y, z) =
1

1− z
(x, y).

If we parameterize S2 by the latitude and longitud ϕ and θ, respectively, by means of
the map

X: (0, 2π)× (0, π)→ S2, X(ϕ, θ) = (cosϕ cos θ, cosϕ sin θ, sinϕ),

we have
π(X(ϕ, θ)) =

cosϕ

1− sinϕ
(cos θ, sin θ). (4)
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The other famous conformal map of the sphere is Mercator’s projection. It is defined
by

M(X(ϕ, θ)) = (h(ϕ), θ),

with h chosen so as to make it conformal, with h(0) = 0. We must have

|dM(Xϕ)|
|Xϕ|

=
|dM(Xθ)|
|Xθ|

,

that is,

h′(ϕ) =
1

cosϕ
.

Therefore,
M(X(ϕ, θ)) = (log(cosϕ/(1− sinϕ)), θ). (5)

It is amazing that Mercator, a Flemish-Dutch cartographer, knew this map already
in 1569, quite some time before Calculus was invented!

Comparing (4) and (5), we see that

exp(M(X(ϕ, θ)) = π(X(ϕ, θ)),

so the two projections differ by the complex exponential function!

3 Lagrange’s theorem

We are now in a position to discuss the problem posed by Lagrange, namely, to determine
all conformal mappings into the plane of an open subset of the sphere such that meridians
(or parallels) are mapped into (arcs of) circles or straight lines.

Let M : U ⊂ S2 → R2 denote the Mercator projection and let π: V ⊂ U ⊂ S2 → R2

be another conformal map satisfying the condition in Lagrange’s problem. Then

f = π ◦M−1: W := M(U)→ R2

is a conformal map that takes one family of coordinate lines into (arcs of) circles or
straight lines. The following result [To] characterizes all conformal maps f : U → R2

with this property, thus showing that all solutions of Lagrange’s problem are given in
terms of such maps by

π = f ◦M.

Theorem 1 Let f : U → R2 be a conformal map defined on the connected open subset
U ⊂ R2. Assume that one family of coordinate curves is mapped by f into a family of
(pieces of) circles or straight lines. Then there exist an inversion I with respect to a
circle of unit radius, a translation L and a composition H of a dilation, a translation
and reflections in the coordinate axes and the line y = x, such that f = I ◦L◦exp ◦H|U ,
or else f is such a composition with possibly some of its components replaced by the
identity map.
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Proof: We give an alternate proof to that in [To]. The first step is to show that also
the other family of coordinate lines is mapped by f into a family of circles or straight
lines. This is a consequence of the following

Lemma 2 Let f : U → R2 be a conformal map defined on the connected open subset
U ⊂ R2. Denote by k1(x0, y0) (resp., k2(x0, y0)) the curvature at x0 (resp., y0) of the
curve x 7→ f(x, y0) (resp., y 7→ f(x0, y)). Then (k1)x(x0, y0) = −(k2)y(x0, y0).

Proof: We have

k1(x, y) =
uxxvx − vxxux
(u2

x + v2
x)

3/2
.

Using the Cauchy-Riemann equations, we get

uxxvx − vxxux = vxyvx + uxyux =
1

2
(u2

x + v2
x)y,

hence k1 = −(E−1/2)y, with E = u2
x + v2

x. Similarly,

k2(x, y) =
uyyvy − vyyuy
(u2

y + v2
y)

3/2
=
−vyxvy − uyxuy

(u2
x + v2

x)
3/2

= (E−1/2)x

Therefore, the images by f of the families of coordinate lines give two families of
circles or straight lines, any element of each one is orthogonal to every element of the
other. We now use the following classical fact [Da], a proof of which is given in the next
section:

Proposition 3 Let two families of straight lines and circles, each of which with at least
two elements, have the property that every member of one family be orthogonal to every
member of the other. Then either they are orthogonal families of parallel lines, or one
of them is a family of concentric circles and the other a family of straight lines through
the common center, or there exists an inversion that maps them into families of one of
those two types.

Compose f with an inversion I given by Proposition 3. Assume that I ◦ f maps
the coordinate lines into families of straight lines and circles of the second type. Now
compose I ◦ f with a translation T that takes the common center of the circles of one
of the families into the origin. Let W be the domain of the principal branch Log of the
complex logarithmic function and set V = (T ◦ I ◦ f)−1(W ). Then Log ◦ T ◦ I ◦ f |V is
a conformal map that, after possibly a further composition with a reflection in the line
y = x, takes coordinate lines into coordinate lines with respect to the same coordinate.
It is easily seen that such a map H is, up to a translation and reflections in the coordinate
axes, a dilation by a nonzero constant. Setting L = T−1, we obtain that

f |V = I ◦ L ◦ exp ◦H|V .

By analyticity, f must coincide with I ◦ L ◦ exp ◦H on U .
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4 Euclidean plane as a paraboloid in the light cone

If R4 is endowed with a Lorentz scalar product

〈〈v, w〉〉 = −v0w0 + v1w1 + v2w2 + v3w3,

for v = (v0, v1, v2, v3) and w = (w0, w1, w2, w3), then it becomes the 4-dimensional
Minkowski space, and is denoted by L4. A vector v ∈ L4 is said to be space-like, light-like
or time-like according as 〈〈v, v〉〉 > 0, 〈〈v, v〉〉 = 0 or 〈〈v, v〉〉 < 0, respectively. The same
terminology is used for a subspace V ⊂ L4, depending on whether the restriction of 〈〈 , 〉〉
to V is positive-definite, degenerate (i.e., V ∩ V ⊥ 6= {0}) or Lorentzian, respectively.
The set of light-like vectors

V3 = {p ∈ L4: 〈〈p, p〉〉 = 0}

is called the light cone of L4. The intersection

E2 = E2
w = {p ∈ V3: 〈〈p, w〉〉 = 1}

of V3 with the affine hyperplane 〈〈p, w〉〉 = 1 is a model of the Euclidean plane for any
w ∈ V3. Namely, fix p0 ∈ E2 and a linear isometry A: R2 → {p0, w}⊥. Then the map
Ψ = Ψp0,w,A: R2 → E2 ⊂ L4 given by

x ∈ R2 7→ p0 + A(x)− (1/2)|x|2w

is an isometry. This follows by computing

dΨ(x)X = A(X)− 〈X, x〉w for all x,X ∈ Rn, (6)

which gives
〈〈dΨ(x)X, dΨ(x)Y 〉〉 = 〈X, Y 〉

for all x,X, Y ∈ R2.

4.1 The space of circles

Circles in Euclidean space R2 have a neat description in its model E2: let α: R → R2

be a unit speed parametrization of an oriented circle or straight line C ⊂ R2 with
(constant) curvature k and let {t(s), n(s)} be the Frenet frame of α. Differentiating the
map ρ: R→ L4 given by

ρ(s) = dΨ(α(s))n(α(s)) + kΨ(α(s))

and using (6) we get

ρ′ = A(n′)− 〈n′, α〉w + kA(t)− k〈t, α〉 = 0
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by the Frenet formula n′ = −kt. Hence ρ is a constant unit space-like vector v ∈ L4

with 〈〈Ψ(α(s)), v〉〉 = 0 for all s ∈ R. It follows that Ψ(C) = E2∩{v}⊥, and from now on
we write C = E2 ∩ {v}⊥ for short. Observe that C is a straight line iff 0 = k = 〈〈v, w〉〉.
Notice also that changing the orientation of α amounts to changing the unit normal
vector field n by a sign, and hence the corresponding curvature k, which makes the
unit space-like vector v also to change its sign. Thus, unit space-like vectors in L4 are
in one-to-one correspondence with oriented circles and straight lines of R2, hence the
space of oriented circles and straight lines of R2 is naturally identified in this way with
de Sitter space S3

1 of all unit space-like vectors of L4.
The relative position of a pair (C1, C2), with Ci a circle or straight line for i = 1, 2, has

a simple description in this model: for instance, if C1 = E2∩{v1}⊥ and C2 = E2∩{v2}⊥
are circles, then C1∩C2 = E2∩V ⊥, where V is the subspace spanned by v1 and v2. Thus
C1 ∩C2 consists of two points, one single point or is empty according as V is space-like,
light-like or time like, respectively.

Moreover, if V is space-like and n1
x and n2

x are the unit normal vectors of C1 and C2,
respectively, at x ∈ C1∩C2, then 〈n1

x, n
2
x〉 = 〈〈v1, v2〉〉. In particular, C1 and C2 intersect

orthogonally iff 〈〈v1, v2〉〉 = 0.
Two circles Ci = E2 ∩ {vi}⊥, 1 ≤ i ≤ 2, are tangent at a point ζ ∈ E2 if and only

if there exists λ ∈ R such that v2 = ±v1 + λζ. For Ci = E2 ∩ {vi}⊥, 1 ≤ i ≤ 2, are
tangent at ζ ∈ E2 if and only if every circle C = E2 ∩ {v}⊥ that passes trough ζ and is
orthogonal to C1 is also orthogonal to C2. Hence any unit space-like vector v ∈ {ζ, v1}⊥
must also belong to {v2}⊥, and thus v2 ∈ span{ζ, v1}.

Similarly, two straight lines Ci = E2 ∩ {vi}⊥, 〈vi, w〉 = 0 for 1 ≤ i ≤ 2, are parallel
if and only if there exists λ ∈ R such that v2 = ±v1 + λw. For C1 and C2 are parallel if
and only if every straight line C = E2 ∩ {v}⊥ that is ortogonal to C1 is also orthogonal
to C2. Hence any unit space-like vector v ∈ {w, v1}⊥ must also belong to {v2}⊥, and
thus v2 ∈ span{w, v1}.

4.2 Proof of Proposition 3

Let Fi = (Sλi )λ∈Λ, 1 ≤ i ≤ 2, be families of straight lines and circles as in Proposition 3.
Write Sλi = E2 ∩ {vλi }⊥ for Sλi ∈ Fi and unit space-like vectors vλi , 1 ≤ i ≤ 2. Let
Vi ⊂ L4 be the subspace spanned by the vectors vλi , 1 ≤ i ≤ 2. Then the assumption
on F1 and F2 amounts to saying that V1 ⊂ V ⊥2 . On the other hand, the fact that Fi
has more than one element implies that the dimension of Vi is at least two. Then either
there exists a light-like line L such that V1 ∩ V ⊥1 = L = V2 ∩ V ⊥2 , or one of V1 or V2, say,
V1, is a space-like plane and V2 is its (time-like) orthogonal complement.

Assume first that V1 ∩ V ⊥1 = L = V2 ∩ V ⊥2 for the light-like line L spanned by w.
Choose any ζ ∈ E2 and a unit space-like vector vi ∈ Vi ∩ ζ⊥, i = 1, 2. Then 〈v1, v2〉 = 0
and any unit space-like vector v ∈ Vi can be written as v = ±vi + λw for some λ ∈ R.
Therefore C1 = E2 ∩ v⊥1 and C2 = E2 ∩ v⊥2 are orthogonal straight lines through ζ and
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Fi is a family of straight lines that are parallel to Ci, i = 1, 2.
Suppose now that L is some distinct light-like line spanned by ζ ∈ E2. Choose a

unit space-like vector vi ∈ Vi ∩ w⊥ i = 1, 2. Then 〈v1, v2〉 = 0 and any unit space-like
vector v ∈ Vi can be written as v = ±vi + λζ for some λ ∈ R. Therefore C1 = E2 ∩ v⊥1
and C2 = E2 ∩ v⊥2 are orthogonal straight lines through ζ and Fi is a family of circles
that are tangent to Ci at ζ, i = 1, 2. Inverting with respect to a circle centered at ζ
transforms F1 and F2 into families of straight lines as in the previous case.

Finally, suppose that V1 is a space-like plane and V2 is its (time-like) orthogonal
complement. If w ∈ V2, then E2 ∩ V2 = E2 ∩ V ⊥1 consists of a single point ζ ∈ E2, and
any v ∈ V1 is orthogonal to both w and ζ. Therefore F1 is a family of straight lines
through ζ and F2 is a family of circles centered at ζ.

If w 6∈ V2, then E2 ∩ V2 = E2 ∩ V ⊥1 consists now of two points ζ1, ζ2 ∈ E2, and any
v ∈ V1 is orthogonal to both ζ1 and ζ2. Thus, F1 is now a family of circles through
ζ1 and ζ2. Inverting with respect to a circle centered at, say, ζ1, transforms F1 into a
family of straight lines through the inverse of ζ2 and F2 into a family of circles centered
at that point.
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