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4 Entanglement in Phase Space
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4.1 Introduction

The realization that quantum mechanics admits entangled states goes back
to Schrödinger in 1926 [1]. He went on to coin the term entanglement in
1935 [2], but the dramatic example of a biological cat coupled to a decaying
nucleus was never meant to be operational. Einstein, Rosen and Podolsky
(EPR) [3] discussed an example of a simple entangled bipartite state in the
same year. Their concern was the compatibility between Heisenberg’s in-
determinacy principle and the generation of strong correlations through a
measurement on a member of a pair of particles, even when they could no
longer be interacting. It was the formulation of Bell inequalities, starting in
1964 [4] that provided a litmus test for nonlocal correlations in quantum me-
chanics. The initial concern was centred on hidden variable theories and the
possibility of their emulating quantum correlations even for particles that
have ceased to interact. Such violations of local causality, detected by Bell
inequalities, could not have developed within any kind of classically evolved
ensemble, irrespective of whether the variables are explicit or hidden.

Quantum information theory [6] has given a new boom to the study of
the qualitative distinctions between classical and quantum mechanics and to
establishing their quantitative measures. There is nothing so dramatic about
the development of nonclassical correlations between particles that are still
undergoing an interaction, but this question has acquired promising appli-
cations in future quantum computations. Necessarily, these deal with finite-
dimensional (Hilbert) state spaces, for which the appropriate entanglement
measures are now well established.

One of the difficulties in applying semiclassical methods to the study of
entanglement is that the former have been developed for infinite-dimensional
Hilbert spaces. Not only are these an extrapolation from the few qubits that
have been usually considered in quantum information theory, but entangle-
ment is most clearly exhibited through the correlations in elementary either-
or experiments. This seems to privilege simple state spaces of a single qubit,
such as spin-1/2 systems. For this reason, Bohm’s version of EPR [7] has
become much more popular than the original full phase space version. A way
around this difficulty is to consider the measurement of special observables
that have only a pair of eigenvalues, even though they operate on states
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within an infinite space. It turns out that one of the most renowned phase
space representations in quantum mechanics, the Wigner–Weyl representa-
tion, is based on such operators. Usually, this representation is viewed as a
way of eliciting classical features in a quantum state, but it will be used here
mainly as a probe into nonclassical correlations.

The development of semiclassical theory throughout the last century al-
lows us to trace the classical skeleton underlying many features of quantum
evolution. These classical structures are the core of approximations that im-
prove asymptotically in the limit of large classical actions, or, more formally,
as Planck’s constant, � → 0. In the case of a finite-dimensional Hilbert space,
this becomes the limit of large dimensions. Even though entanglement is a
subtle phenomenon, it leads to gross violation of inequalities and to quan-
titative measures that are not beyond the accuracy of semiclassical approx-
imations. Therefore, it is appropriate to enquire into the manner in which
classical structures can be implicated in such a very nonclassical feature of
quantum mechanics.

Traditionally, semiclassical theory is concerned with the unitary quantum
evolution of closed systems, which are thus described classically by Hamilto-
nian dynamical systems. Each point in phase space accounts completely for
the state of the classical system that evolves along a trajectory. A bipartite
or multipartite system is accommodated in this correspondence by a higher
dimensional phase space. Each point still evolves as a single-dimensional (1-
D) trajectory, but its projections onto the subspaces, which describe the
succession of possible states of each component of the system, are also 1-D
trajectories in their own right, as shown in Fig. 4.1.

Fig. 4.1. The classical trajectories x1(t) and x2(t), for each component in its own
phase space, are projections of the full trajectory for the entire system
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Part of the power of Hamiltonian dynamics lies in the freedom to
transform between different sets of phase space coordinates. This canoni-
cal invariance emphasizes the importance of the unified evolution of the full
system over that of the component trajectories, which are seen to depend
on the particular choice of coordinates. In contrast, it is in the separation
into components that the phenomenon of quantum entanglement emerges.
The particular nature of quantum measurement lies behind this difference,
as is discussed in Sect. 4.2: It is only when this is combined to the preceding
unitary evolution, that the unclassical correlations between the components
become manifest.

Therefore, the study of the properties related to entanglement should be
viewed as an objective that is imposed externally on semiclassical physics,
which perhaps explains the low priority received by this goal so far. In these
lectures, we will only be concerned with the most elementary kind of entan-
glement, i.e., that of pure bipartite states, for which the measures of entan-
glement are well established. Even so, it will be seen that this simple case
requires the introduction of theoretical instruments of semiclassical theory
that are far from elementary. Not only do we need to cope with a higher
dimensional phase space for the description of a bipartite system, but it will
be shown how the simplest semiclassical description of operators is achieved
in a phase space with double the dimension of the one corresponding to the
states on which they act. Conversely, some of the most relevant structures
for entanglement, such as partial traces and probability densities, can be in-
terpreted as projections of the Wigner function, or sections of its Fourier
transform.

The following section reviews the different ways in which features of quan-
tum mechanics, interference and entanglement are nonclassical. Simple ex-
amples introduce the reflection symmetries, quite familiar for classical waves,
that will play a major role in the Wigner function formalism. Prior to this
though, it is useful to consider classical–quantum correspondence in a more
simple-minded way. This is the subject of Sect. 4.3, which introduces prod-
uct spaces for both quantum states and classical probability distributions in
phase space. In either case, the factorizability is broken by an interaction
Hamiltonian, leading to correlations for measurements on the different com-
ponents. In the classical case, these correlations are constrained by general
Bell inequalities. This section also introduces the Schmidt decomposition of
quantum states.

Section 4.4 reviews standard semiclassical theory for quantum states. Spe-
cial emphasis is given to products and factorization of both the phase spaces
themselves and the internal Lagrangian surfaces that support the quantum
states. This product structure is then generalized in Sect. 4.5 to the represen-
tation of operators. Dyadic operators of position or momentum eigenstates
form a complete linear basis for all quantum operators, which correspond to
planes in double phase space. Linear canonical transformations take these
into the phase space coordinates for the Weyl representation and the chord
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representation, its Fourier transform. These bases are associated respectively
to phase space reflections and translations and to the corresponding quantum
operators. In the case of the density operator, we thus obtain the Wigner
function and the chord function, both presented in Sect. 4.6. Though the
Wigner function cannot be interpreted as a probability distribution, because
it may be negative, it coincides with the difference for probabilities of mea-
suring either the positive or the negative eigenvalue of the reflection operator.
Section 4.7 is dedicated to projections of the Wigner function and sections
of the chord function, which represent the reduced density operators. The
loss of purity of the latter, obtained as integrals of the square of either the
reduced Wigner function or the reduced chord function, indicates that the
overall state is entangled.

It may be guessed that an initially classical pure state, the product of
Gaussian Wigner functions, would not be entangled by a simple rotation of
positions and momenta. After all, this class of states, including the original
EPR states, could stand in for a classical phase space distribution. However,
this is not so, as shown in Sect. 4.8: The reflection correlations for such
states violate Bell inequalities, even though measurements of positions and
momenta can only correlate classically. The transformation to centre of mass
coordinates for any number of particles, studied in Sect. 4.9, has similar
features. By invoking the Central Limit Theorem for Wigner functions, we
obtain features of the nonunitary evolution of the centre of mass in agreement
with Markovian theory, i.e., the exact solution of the Lindblad equation for
the density operator.

The final section relates double phase space geometry to the semiclassical
Wigner and chord functions. These are not known in detail for eigenstates
of chaotic Hamiltonians, but it has been proved that ergodic eigenstates are
supported by the entire energy shell. In this case, the unitary transformation
that factorizes the state can have no classical correspondence.

A lot of the experimental work related to entanglement has been carried
out in quantum optics. Rarely is the full generality of semiclassical states
employed there and one can rely mainly on states derived from the eigenstates
of the harmonic oscillator, even when phase space is invoked [8]. For this
reason, the initial examples of phase space structures are here chosen among
states of this type. The reader who wishes to avoid the more subtle aspects
of semiclassical theory can mostly skip Sects. 4.4, 4.10 and parts of 4.5.

4.2 Entanglement and Classical Physics

Entanglement is considered to be a quintessential quantum property which
defies all attempts at a classical correspondence. For this reason, its descrip-
tion in terms of the classical concept of phase space might appear foolhardy.
It could be that the semiclassical program of uncovering meaningful relation-
ships between XIX’th and XX’th century mechanics would be overstretched.
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Perhaps, though, such an endeavour would make more sense if it were recalled
that the usual validity of a classical description of macroscopic phenomena
can be attributed to the effect of decoherence. In its turn, this results from
the entanglement of a given system with an uncontrolled environment, caused
by interactions that can be minimized, but never entirely eliminated. Thus,
in spite of the fact that the common working languages employed in classi-
cal and quantum mechanics are quite alien to each other, it is hard to fully
comprehend why the outcome of decoherence should be the emerging ap-
propriateness of a classical description for quantum systems, unless we can
detect its traces even within entanglement itself. A simplified version of this
program will be sketched in Sect. 4.10.

Before attempting to establish a bridge between some features of quan-
tum entanglement and classical mechanics, it is worthwhile to consider the
more obvious way in which interference already separates these theories. In
contrast, the analogy of quantum mechanics with classical waves is much
smoother: The latter may be superposed linearly and they interfere in the
same way as matter waves. In a simple two-slit experiment, the initial quan-
tum state is prepared as a coherent superposition of momentum eigenstates,
with eigenvalues that can be classically measured: The probability for each
momentum direction is the same as for a uniform ensemble of classical
states. The evolution through a pair of slits generates classical interference,
equally observable in water waves, or sound waves. Quantum strangeness only
emerges if the intensity of the resulting interference pattern for the conju-
gate variable, the position, is interpreted as the probability for the position
measurement of a single particle, moving according to classical mechanics.
Even so, the particular nature of quantum measurement itself does not play
a prominent role in the phenomenon of quantum interference. The subsequent
quantum state is certainly redefined by the result of the measurement, but
this is not a crucial feature of quantum interference, no matter how unclas-
sical its interpretation for a single particle.

The success of the semiclassical treatment of interference phenomena is
no real surprise. If we start from Feynman’s path integral formalism [9, 10],
quantum evolution is described by a continuum of interfering paths. Semiclas-
sical theory merely groups these around a few particular classical trajectories
with their Feynman phase. The amplitude of each of these discrete interfer-
ing terms is then given by a local integration over the continuum of paths.
Classical mechanics takes its part in the theory, but there is no limitation
to classical phenomena and interference is well described. Indeed, the role of
classical mechanics is the same as ray optics in classical wave theory.

In contrast to interference, the unintuitive nature of entanglement is de-
rived from that of quantum measurement itself. In no way does this tally
with the common sense description of the macroscopic world. Nothing in our
everyday experience prepares us for the collapse of a state that is measured
into one of several possibilities. The common sense presupposition would be
that the effect of the measurement on the system could and should be made
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negligible. Entanglement highlights this phenomenon in a specially subtle
way because it involves pairs of measurements on systems with at least two
degrees of freedom, or components.

If we consider classical waves, or particles, it would be indeed strange to
imagine that such a collapse could result from the measurement of a subsys-
tem, thus constraining the possible states of the complementary subsystem:
It is well known that playing a note on a piano, i.e., exciting a finite string,
will provoke a response on the next octave string. Here we have two nearly
independent systems, stretched strings, weakly coupled by the surrounding
air. Perhaps, it is better to consider the same note on two nearby pianos, so
that we consider the interaction of identical systems. The wave form assumed
instantaneously by the pair of strings may be used to describe the state of
the whole system, or else, we may prefer the Fourier representation, in terms
of the eigenstates for the discrete set of allowed frequencies of each string.
These classical strings are completely analogous to the textbook example in
quantum mechanics of particles moving in 1-D, each in its own box. But there
is no way in which a photograph of one of the piano strings will affect the
sound produced by the other string, no matter how entangled the quantum
analogues happen to be! Likewise, the measurement of the frequency spec-
trum of the vibrations of one of the strings does not oblige it to choose among
the various overtones and we would be even more surprised if this led to a
correlated jump in the other string.

Yet this is just what we would expect for the analogous quantum system
composed of two particles in their 1-D boxes, coupled by the same Hamilto-
nian that may account for the atmospheric interaction. Such a measurement
would single out a discrete energy, or equivalently a discrete momentum mod-
ulus. Furthermore, in the quantum system, we could also measure the position
of the particle, with a probability density that is specified by the wave in-
tensity. No equivalent interpretation can be imputed to the classical wave, so
that such a position measurement would then be devoid of meaning.1

Just as there are measurements on a quantum system that are meaningless
for a classical wave, there are others that make no sense for a classical particle.
Consider the excitation of a piano string by the same note, but played on
a clarinet. This has only even harmonics because it is equivalent to a string
that is free on one side. Then only the even harmonics will be excited in the
string, which will be symmetric about its midpoint. Such an even (or odd)
parity, i.e., the symmetry (or antisymmetry) of the classical stationary wave,
is certainly a measurable property of the analogous quantum state. Indeed,
even a classical wave, a string that is free on one side, could in principle
be used as a probe to measure directly the even component of the wave,
instead of exciting it. But what would it mean to measure the parity of
the corresponding classical particle in a box? Generalizations of such parity

1 It should be remembered that the classical particle analogy here is not related
to the phonons that are generated by second quantization within each mode.
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measurements, distinguishing the eigenvalues of non-mechanical observables,
will play a major role in the following discussions of entanglement.

Measurement theory lies outside the scope of a semiclassical treatment.
However, such experimental outcomes will be preceded by (unitary) quan-
tum evolution, which is not so adverse to a classical description. Indeed the
process by which subsystems become entangled is a preparation that precedes
any quantum measurement. It is only in the probabilistic interpretation of
the subsequent measurement on the system that the quantum and the clas-
sical viewpoints fundamentally diverge. As it happens, standard measures of
entanglement require that the components of the system be completely de-
fined, but do not pre-specify the measurements to be performed. Thus, the
presence of entanglement only indicates the possibility that some subset of
measurements will have nonclassical correlations. It is precisely this lack of
definition with respect to future quantum measurements that allows space
for a semiclassical treatment.

The study of classical waves displays many of the properties of a simple
quantum system. Indeed, Rayleigh’s The Theory of Sound [11] anticipates
some results later rediscovered in semiclassical theory. However, each piano
string is a system with an infinite number of degrees of freedom. Though it is
not forbidden to consider coupled fields,2 the following lectures will concern
mainly systems with a finite number of degrees of freedom. In most cases,
two degrees of freedom already suffice to discuss the relation between the
concept of entanglement and classical mechanics. So we start with a review
of classical–quantum correspondence.

4.3 Classical–Quantum Correspondence

The simplest quantum systems with a classical correspondence have a single
degree of freedom, e.g., a particle constrained to move on a straight line. The
classical state of the system is described by its position, q, and its momentum,
p. Together they define a point in phase space, x = (p, q), which is a 2-D plane.
Perhaps, classical state space would be a more appropriate term because each
point specifies all future motion of a classical system, once the Hamiltonian,
H(x), is specified, through Hamilton’s equations:

ṗ = −∂H
∂q

, q̇ =
∂H

∂p
. (4.1)

These equations may be compactified into the form

ẋ = J
∂H

∂x
, (4.2)

with the definition of the (2× 2)-dimensional matrix
2 Perhaps, quantum superstring theory will tackle entanglement someday.
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J =
[

0 −1
1 0

]
, (4.3)

acting on the phase space points, x = (p, q). Unless H(x) is quadratic, this
motion is nonlinear.

Corresponding to this 2-D plane, quantum mechanics matches the states
|ψ〉 of an infinite-dimensional Hilbert space, H, on which act the operators, q̂
and p̂. Each eigenstate of q̂, labeled by the eigenvalue q0, corresponds to the
vertical line, q = q0, whereas the horizontal phase space lines are matched
by eigenstates of p̂. These operators do not commute, [ p̂, q̂ ] = i�, but if we
appropriately symmetrize the order in which p and q appear in H(x), then
the motion of the states |ψ〉 is also determined by the quantum Hamiltonian
H(x̂), through the linear equation

i�
∂

∂t
|ψ〉 = H(x̂)|ψ〉, (4.4)

i.e., Schrödinger’s equation.
The uncertainty principle excludes the existence of a quantum state that

corresponds precisely to a phase space point. However, the unavoidable dis-
persion in measurements of position or momentum allows to seek an approx-
imate correspondence with probability distributions of phase space points.
This is unsatisfactory as far as interpretation is concerned because proba-
bilities are associated to the square of a state rather than the state itself.
Nonetheless, a certain intuition can be obtained through this analogy. Given
a phase space probability density, f(x), the expectation value of any classical
observable O(x) is given by

E(O) =
∫

dx O(x) f(x) . (4.5)

Hence, the dispersions in position and momentum are δq2 = E
(
(q − E(q))2

)

and δp2 = E
(
(p− E(p))2

)
. The uncertainty principle then imposes that only

phase space distributions for which Δ′ = δqδp ≥ � should be considered.
However, this quantity is not a classical invariant. The flow, x(0) → x(t),

generated by the Hamiltonian is a canonical transformation, so that [12], for
all t, ∮

γ0

p(0) · dq(0) =
∮

γt

p(t) · dq(t) , (4.6)

where γ0 is any circuit and γ0 → γt. General Hamiltonian evolution will
stretch and bend any closed curve that is initially compact, so that a prob-
ability distribution that is unity inside γ0 and zero outside will not have
constant Δ′. Linear canonical transformations, that is, symplectic transfor-
mations, are well known to be specially favourable for classical–quantum
correspondence, as will be further discussed. It will be shown in Sect. 4.6
that, Δ, the determinant of the covariance matrix ,
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K =
[
δp δpq
δpq δq

]
, (4.7)

where (δpq)2 = E (pq − E(p)E(q)), is invariant under symplectic transforma-
tions.

To discuss entanglement, we need more than one degree of freedom. Quan-
tum states can then be decomposed into a basis of product states,

|ψ〉 = |ψ1〉 ⊗ . . . |ψl〉 ⊗ . . . |ψL〉 , (4.8)

which span the full Hilbert space, H = H1 ⊗ . . .Hl ⊗ . . .HL, i.e., the tensor
product of the factor Hilbert spaces that describe each degree of freedom.
Likewise, the full phase space is now a Cartesian product of 2-D conjugate
planes, each the phase space for a particular degree of freedom,

x = x1 × . . . xl × . . . xL (4.9)

and thus has 2L dimensions. However, we must be wary of the difference
between the classical and quantum geometries: a phase space strip, δq, corre-
sponds to this range of eigenvalues for the operator q̂. This set of eigenstates
spans an infinite-dimensional subspace of the product Hilbert space, what-
ever the number of degrees of freedom. On the other hand, each of these
position eigenstates corresponds to one of the parallel L-D q-planes within
the 2L-D phase space strip.

The classical or quantum motion for systems with more than one degree
of freedom is still defined by a Hamiltonian, H(x), or H(x̂), but now ∂H/∂x
is a 2L-dimensional vector and J is a block matrix. We shall also use the skew
product ,

x ∧ x′ =
L∑

n=1

(plq
′
l − qlp

′
l) = J x · x′ . (4.10)

This symplectic area of the parallelogram formed by the vectors x and x′ is
invariant with respect to symplectic transformations. Again, these are linear
canonical transformations, with (4.6) interpreted as a line integral in the 2L-
D phase space. For higher dimensional systems, all even dimensional volumes,
from 2 to 2L, are preserved by canonical transformations [12].

If the degrees of freedom are completely decoupled, each with its own
probability distribution, fl(xl), the full probability distribution will be just
the product,

f(x) = f1(x1) . . . fl(xl) . . . fL(xL) . (4.11)

In this case, the probability distribution for a single degree of freedom is
reobtained by tracing over the other variables:

f1(x1) =
∫
f(x) dx2 . . . dxL . (4.12)
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If the full probability distribution cannot be factored into a product, the
above equation then defines the marginal distribution. This process foreshad-
ows that of partial tracing over the density operator, to be studied in Sect. 4.7,
which is central to the study of entanglement.

The product nature of the classical distribution will be retained through-
out the evolution if the full classical Hamiltonian is purely additive,

H(x) = H1(x1) + . . . Hl(xl) + . . . HL(xL) , (4.13)

i.e., if there is no coupling between the motions of the several degrees of
freedom. This follows from the decoupling of Hamilton’s equations into

ẋl = Jl
∂Hl

∂xl
, (4.14)

for each degree of freedom. In other words, if k �= l, then xl(t;xl0) does not
depend on xk (nor on the initial value, xk0). Furthermore, we then have

fl(t;xl) = fl(t;xl(−t;xl)) and f(t;x) = f1(t;x1) . . . fL(t;xL) , (4.15)

where xl(−t;xl) specifies the past location of xl. Likewise, the volumes in
each subspace will be preserved, and the conservation of the 2L-dimensional
volume is just that resulting from the conservation of the factor volumes.

For a classical system, the transition from product probabilities to gen-
eral probabilities can only be generated by coupling terms in the driving
Hamiltonian, containing cross products, which are at least bilinear in the
different variables. A general classical observable will be a function of all the
phase space variables, and its expectation is accordingly given by (4.5). For
instance, this might be the either-or observable, O1 = ±1 for detecting some
physical properties associated with one particle, or the detection of O2 = ±1
for a second particle. For classical particles that have been allowed to drift
sufficiently far from each other after interacting, the result of the O1 mea-
surement will not affect the O2 measurement and vice versa. Therefore, the
correlation must be represented in the form

E(O1;O2) = E(O1 O2) =
∫

dx1dx2 O1(x1)O2(x2) f(x1, x2) . (4.16)

This equation has the same form as correlations postulated for local hidden
variable theories [4, 13]. Indeed, one of the reasons for this choice is that
(4.16) must hold for any evolution of f(x) governed by classical mechanics.
This form for the correlation between different components of the system is
then taken as a prerequisite for theories that in all other respects should give
the same results as quantum mechanics. Since this is certainly not one of the
objectives of classical mechanics, such conjectures then necessarily demand
extra, unknown and hence hidden variables.

It is due to the seminal work of Bell [4] that we are able to compare,
through inequalities, the correlations predicted by quantum mechanics with
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a very wide range of possible local correlations. The point is that any mea-
surement affects the entire quantum state, i.e., both its components, unless
the state happens to be an eigenstate of the measured observable. So quan-
tum measurements are not local in the sense that led to (4.16). In case of the
general CHSH inequality [6, 14], involving either-or observables, O1a, O1b,
O2a and O2b, (4.16) implies that

|E(O1a;O2a) + E(O1a;O2b) + E(O1b;O2a)− E(O1b;O2b)| ≤ 2 . (4.17)

As well as constraining possible hidden variable theories, this inequality can
be used as a detector of nonclassical correlations in quantum mechanics.
This kind of nonclassicality, entanglement , is much more subtle than quan-
tum interference effects, as will be discussed in the later sections. A dip into
Bertlmann’s socks and the nature of reality [15] by Bell provides a delightful
discussion of all the main points concerning classical locality versus quantum
correlations. The book by Peres [13] is also recommended.

It is worthwhile to discuss some specific examples of systems with more
than one degree of freedom. An obvious possibility is a collection of particles,
each moving in one dimension. Another is a single particle moving in two,
or three dimensions. Classical and quantum mechanics make no distinction
between these alternative interpretations of the dynamical variables. All that
is demanded is that the variables pertaining to different degrees of freedom
commute, [ p̂k, q̂j ] = i�δkj , or, correspondingly, that the classical Poisson
bracket {pk, qj} = δkj (see e.g., [16]). We can also use angular momentum
and their conjugate angles. But are other variables, obtained through classical
canonical transformations, allowed?

For example, consider our piano string, now modeled as L masses con-
nected by harmonic springs. We can switch to the L normal modes of vibra-
tion. This is a linear canonical transformation, which substitutes the original
L conjugate planes, xl = (pl, ql), by new conjugate planes, x′l = (p′l, q

′
l), that

now describe collective motions of the L masses. This is also a proper phase
space to be quantized, x′l → x̂′l. Another important example of a quantiz-
able canonical transformation follows from the description of a collection of
particles in terms of the centre of mass together with internal coordinates.

Whatever the physical realization, symplectic transformations correspond
exactly to unitary quantum transformations and hence to equivalent quan-
tum systems [17]. These transformations generally redefine the components
of the full system and may take an entangled state into a product state, or
vice versa. Any measure of entanglement is affected by such a general trans-
formation, so one requires only that the measure be invariant with respect to
local unitary transformations, lying within each separate component. As for
nonlinear canonical transformations, these are not exactly matched by quan-
tum unitary transformations [17] and, hence, cannot be directly quantized.
It might still be useful sometimes to push this correspondence through, but
it must be remembered that the result is only a semiclassical approximation.
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Taking again the continuum limit, L→∞, each normal mode of the finite
chain converges onto one of the lower modes of the continuous string. There
is no essential difference between the interaction and hence the entanglement
among these modes of the continuum and that of finite modes (caused by
residual non-quadratic terms in the Hamiltonian). In each case, there cor-
responds a plane in the phase space, which is of infinite-dimension in the
case of a field. The entanglement between modes of the electromagnetic field
within a finite cavity also has a similar interpretation in terms of a classical
field. The unperturbed motion is now that of a quantized harmonic oscillator,
corresponding to a classical oscillation in each phase plane .

Another example is that of a particle with internal structure. The latter
may be described by an angular momentum, coupled to the translational
degrees of freedom by an external field. The Stern–Gerlach experiment is
just such a system, in which the magnetic moment, tied to the spin angular
momentum of the electron is coupled to its position by an inhomogeneous
magnetic field. The spin is an intrinsically quantum mechanical two-level sys-
tem and the interest in quantum information theory tends to emphasise such
simple quantum systems. But, in principle, there is no difference between
this case and a Rydberg atom, prepared in a state with a large electric dipole
moment, coupled to position through an inhomogeneous electric field. Such
a system can be described more naturally in classical terms. Cavity quantum
optics deals with the coupling and hence the entanglement of the internal
states of individual Rydberg atoms with a specific mode of the electromag-
netic field.

For all these systems, coupling terms in the overall Hamiltonian will de-
stroy the product form of an initially decoupled quantum state, or classical
distribution. We should bear in mind three basic differences between classical
and quantum systems: (i) the nature of the initial state; (ii) the nature of the
evolution and (iii) the effect of experiments. As we have seen, the last is the
most radical difference, which, indeed, gives rise to the concept of entangle-
ment. Our objective here is to cast the quantum mechanical description of
(i) and (ii) in the most classical terms possible, so as to highlight the truly
innovative elements of the quantum theory when (iii) is considered.

A fundamental difference between the quantum and classical descriptions
should be discussed before proceeding: The analogy between the evolution of
classical probability distributions and quantum states is somewhat deceptive
in as much as the latter determine only probability amplitudes that can be
complex and interfere with each other. To arrive at a closer analogue of prob-
abilities, we should, in some sense, square the quantum states. The correct
procedure is to define density operators, or their phase space representation,
Wigner functions, to be studied in Sect. 4.6. However, their evolution is non-
classical, unless the Hamiltonian is quadratic.

It will be only in the context of the density operator that it becomes mean-
ingful to distinguish between pure states and mixed states. Taking an average
over a set of probability distributions defines a new probability distribution.
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Likewise, if we superpose the corresponding quantum states, |ψj〉, we obtain
a new quantum pure state. But if we average over the corresponding pure
state density operators, ρj = |ψj〉〈ψj |, there results a mixed state. The latter
will be discussed in Sect.4.6.

Now it is important to bring out a special form of state superposition.
This is the Schmidt decomposition,

|ψ〉 =
∑

j

λj |ψ1〉j ⊗ |ψ2〉j , (4.18)

which exists for any bipartite state (see Sect. 2.3.1 or e.g., [6]). It must be
emphasised that both factor states in the above tensor products may them-
selves correspond to several degrees of freedom, but the result is only proved
if there are only two of them. The product states form a particular orthonor-
mal basis in which to describe the state, |ψ〉, so that the real, non-negative
coefficients, λj , satisfy

∑
j λj

2 = 1. The state is entangled, unless λj = δ1,j .
The Schmidt decomposition is often employed for the description of entangled
states in finite Hilbert spaces. In this case, the number of nonzero eigenvalues,
λj , is a relevant quantifier of entanglement, known as the Schmidt number .
For infinite-dimensional Hilbert spaces, there may be an infinite number of
nonzero Schmidt coefficients.

4.4 Semiclassical Quantum States

Consider a momentum eigenstate |p′〉 for L = 1. In the momentum represen-
tation, this is just

〈p|p′〉 = δ(p′ − p) , (4.19)

which is not in a good form for semiclassical extrapolation. For this purpose,
it is better to use the complementary representation,

〈q|p′〉 = exp
(
iqp′

�

)
= exp

(
i
Sp′(q)

�

)
. (4.20)

The phase in this expression can be interpreted as the area between the
classical curve (the straight line p′ = p) and the q-axis. There is also an
arbitrary constant phase, which is established by the choice of the initial
point for the integral,

S(q) =
∫ q

q0

p(q) dq . (4.21)

Consider now a general observable, K(p̂, q̂). Its eigenstates correspond
classically to curves, γ, in phase space: K(p, q) = k. These may be viewed
locally as (possibly multivalued) functions, pj(q). Then the simplest semi-
classical approximation is
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〈q|k〉 =
∑

j

Aj(q) exp
[
i

(
Sj(q)

�
+ νj

)]
, (4.22)

see e.g., [18]. The phases, Sj(q), are again obtained from (4.21). The extra
constant phases, νj , are known as Maslov indices [18, 19], but they will not
be discussed here. The amplitudes, Aj(q), are defined purely in terms of the
classical structure. They are finite wherever the vertical line, q = constant,
intersects the classical curve transversely. Where this vertical line is tan-
gent to the classical curve, such as qc in Fig. 4.2, the amplitude diverges.
These points where the semiclassical approximation breaks down are known
as caustics. The different branches of the function pj(q) are connected at
caustic points.

In the case of bound eigenstates of K̂, the curves γ are closed. Then the
eigenvalues are approximately obtained by the Bohr–Sommerfeld quantiza-
tion condition, ∮

γ

p dq = (n+
1
2
)� . (4.23)

The quality of the semiclassical approximation for both the states themselves
and their eigenvalues improves for large quantum numbers n. Ground states,
including that of the harmonic oscillator, are badly described by these ap-
proximations.

Even for large n, a closed curve, γ, must inevitably have at least a pair
of caustics. The way around this is to switch to the p-representation. Then
the vertical tangent at the caustic position, qc, shown in Fig. 4.2, would
correspond to the state 〈p|qc〉, which is in a nice semiclassical form. This
means that the local branch of the multivalued function q(p) gives rise to a
semiclassical approximation that is a superposition of terms of the form

Fig. 4.2. The caustic of the semiclassical approximation to 〈q|k〉 lies in the neigh-
bourhood of the point qc, where the tangent to the classical curve is vertical. The
projection of this region onto the p-axis is nonsingular, leading to a good semiclas-
sical approximation for 〈p|k〉
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〈p|k〉 = B(p) exp
[
i

(
S(p)

�
+ μ

)]
. (4.24)

This allows us to define the correct semiclassical approximation in the q-
representation through the caustic region by the Fourier transform

〈q|k〉 =
1

(2π�)1/2

∫
dp 〈p|k〉 exp

(
iqp

�

)
, (4.25)

which leads to a more refined approximation in terms of Airy functions in-
stead of exponentials. This is usually referred to as the Maslov method of
dealing with caustics [20] (also discussed in [18]).

Let us now consider a product state for L > 1. Then,

〈q|p′〉 = exp
(
iq1p

′
1

�

)
. . . exp

(
iqLp

′
L

�

)
= exp

(
iq · p′

�

)
, (4.26)

and we can generalize the definition of action,

S(q) =
∫ q

q0

p(q) · dq . (4.27)

This does not depend on the choice of path between q0 and q because p′(q)
is a constant in this simple case. Hence, this function defines a Lagrangian
surface, i.e., a surface such that

∮
p · dq = 0 , (4.28)

for any (reducible) circuit [12].
In general, the product state will involve arbitrary eigenstates of L ob-

servables, K̂ = K̂1K̂2 . . . K̂L, each in its own Hilbert space:

〈q|k〉 = 〈q1|k1〉 . . . 〈qL|kL〉 . (4.29)

The wave function will be a superposition of terms with the form

〈q|k〉 =
∏

l

Al(ql) exp
[
i

�
(S1(q1) + . . .+ SL(qL))

]
, (4.30)

one term for each branch of the functions, pl(ql).
Defining again S(q) as the above phase, it is seen to be independent of

the order in which we progress along each segment (q0l, ql), while keeping the
other integration variables constant: The definition (4.21), now reinterpreted
as a path integral, is independent of the path on the surface. Therefore, this
more general surface, K(p, q) = k, is also Lagrangian.

If the surface is the product of L-quantized circles (closed curves), it will
be an L-torus, τ . Each of the L irreducible circuits, γl, must then satisfy the
Bohr–Sommerfeld conditions,



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

174 A.M. Ozorio de Almeida

∮

γl

pl · dql = (nl +
1
2
)�, (4.31)

or some suitable generalization (see e.g., [18]). Notice that the line integral
here used is not restricted to plane sections of τ because all topologically
equivalent circuits on a Lagrangian surface must have the same action.

Let us now evolve the product state semiclassically. The basic result,
due to van Vleck [21], can be reinterpreted as the statement that classical
and quantum evolutions commute. In other words, we can evolve classically
each curve, γl, if there are no cross terms in the Hamiltonian, so that the
different degrees of freedom are decoupled. Each evolved observable then
corresponds to Kl(xl, t) = Kl(xl(xl0, t), 0) and we approximately reconstruct
the classically evolved state from the evolved torus, τl(t), which is the product
of the γl(t) : Kl(xl, t) = kl.

Notice that this classical evolution of products of curves fits into the
general view concerning the evolution of product probability distributions
in the previous section, by merely choosing fl(t;xl) = δ(Kl(xl, t) = kl) and
running time backwards. The important distinction between classical and
semiclassical evolution is that the latter contains interferences between the
different branches of the evolving classical curve. Each representation exhibits
these interferences in a different way.

Just as cross terms containing products of the different variables in the
Hamiltonian destroy the product form of a classical probability distribution,
the classically evolved L-D surface corresponding to an original product state
also ceases to be a product. However, the smoothness of the evolution implies
that the topology of the surface must be preserved (be it plane, torus, or,
in between cylindrical). Furthermore, the classical evolution, x0 → xt, is
a canonical transformation, and hence all reducible circuits on the evolved
surface have zero action, i.e., τt still has the Lagrangian property, which allows
to define the path-independent action S(q), and the irreducible circuits of τt
still satisfy the same Bohr–Sommerfeld conditions to first order in �.

Let us investigate further the case of two degrees of freedom. The separa-
ble torus, τ = γ1⊗γ2, can be pictured through the separate γ1 and γ2 curves.
These coincide with sections of the 2-D torus by alternative 3-D planes (the
normal case for Poincare sections, see e.g., [18]). The γ2 curve does not de-
pend on the choice of the q1 = constant section. The separable torus projects
as a rectangle onto position space (q1, q2), as shown in Fig. 4.3. Within this
rectangle, there are four different branches of the torus, which project onto
each position, q, corresponding to the combinations of the two branches of
each circle. The caustics at the side of the rectangle are double fold lines.

After a general canonical evolution, the sections of τ are no longer equal
for different choices of q1 = constant (or q2 = constant), though all the
sections have the same area, S1 (or S2). In some cases (to do with time
invariance of the Hamiltonian), the projection onto the q-plane will merely
distort the rectangle, which will still have finite-angled corners connecting
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Fig. 4.3. Each point within the rectangular caustic of a two-dimensional product
torus is the image of four phase space points under p-projection

double-fold lines. But in general, these corners, hyperbolic umbilic points,
will unfold in the generic form specified by catastrophe theory, as shown in
Fig. 4.4. There are four possibilities for the topology of the unfolding of the
rectangle, shown in Fig. 4.5. For L > 2, the projection of the L-torus onto
the L-D q-plane will be a solid hypercube that will be distorted, or unfolded
by the motion generated by a coupling Hamiltonian. (These geometries are
reviewed in [18], but are more thoroughly discussed in [22].)

The representations of quantum states in terms of orthogonal position, or,
alternatively, momentum eigenstates are the best that we can do because of
Heisenberg’s uncertainty principle. Semiclassically, this corresponds to view-
ing a Lagrangian surface through a set of Lagrangian planes that foliate

Fig. 4.4. Catastrophe theory establishes the generic form for the unfolding of the
double-fold caustic at each corner of the projection of a product torus as it evolves
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Fig. 4.5. The full topology of the full fold lines is not determined by catastrophe
theory: Each of the above forms corresponds to a different symplectic evolution
from an initial product torus

phase space. We switch from the q-representation to the p-representation
by means of a Fourier transform of 〈q|ψ〉. This corresponds classically to
taking the Legendre transform of S(q) [12]. For L > 1, we may take the
Fourier transform for a subset of the degrees of freedom. This corresponds
to using a classical description in terms of the alternative Lagrangian planes
(p1, . . . , pl, ql+1, . . . , ql).

One way to achieve a full phase space description is to use the basis of
coherent states [8, 23–26], labeled by the phase space vector, η = (ηp, ηq),

〈q|η〉 =
( ω

π�

)1/4

exp
[
− ω

2�
(q − ηq)2 + i

ηp

�
(q − ηq

2
)
]
. (4.32)

Even though the coherent state basis is overcomplete, the exact decomposi-
tion,

|ψ〉 =
1
π

∫
dη|η〉〈η|ψ〉 , (4.33)

is unique. The coherent states are phase space translations of the ground
state of the harmonic oscillator (with unit mass):

〈q|0〉 =
( ω

π�

)1/4

exp
(
− ω

2�
q2
)
. (4.34)

These result from the action of the translation operator :

T̂η = exp
[
i

�
(ηp · q̂ − ηq · p̂)

]
= exp

(
i

�
η ∧ x̂

)
, (4.35)

using the skew product (4.10). If either ηp = 0 or ηq = 0, we obtain the usual
translation operators for momenta, or positions, respectively. The arbitrary
phase due to noncommutation of p̂ and q̂ is here chosen in the most symmetric
way, using the Baker–Hausdorff relation [27].

In quantum optics, it is customary to switch to the basis of creation and
annihilation operators (q̂± ip̂)/

√
2�. In this context, the translation operator
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(4.35) depends on the complex chords (ξp ± iξq)/
√

2� and is called the dis-
placement operator [23]. The semiclassical limit for a complex phase space is
not as transparent as the real theory treated here. However, it is quite feasible
to effect phase space translations in an experimental optical context [28].

The coherent state representation is not orthogonal and is overcomplete.
The alternative, to be explored in the next section, is to work directly with
operators: We represent operators in orthogonal operator bases in analogy to
the way that quantum states are commonly decomposed. This allows us to
work directly with the translation operators, without having to apply them
to the ground state of the harmonic oscillator.

4.5 Operator Representations and Double Phase Space

The linear operators, Â, that act on the quantum Hilbert space form a vector
space of their own: |A〉〉. Defining the Hilbert–Schmidt product ,

〈〈A|B〉〉 = tr Â†B̂ , (4.36)

we find that the dyadic operators |Q〉〉 = |q−〉〈q+| form a complete basis, i.e.,

〈〈Q|A〉〉 = 〈q+|Â|q−〉 = tr |q−〉〈q+|Â , (4.37)

provides a complete representation of the operator Â. Here, Â† is the adjoint
of Â. One should note the similarity between this dyadic basis, |q−〉〈q+|, in
the case of L = 1 with the basis of product states, |q1〉⊗|q2〉. The substitution
of a bra by a ket in the former will in most cases imply no more than complex
conjugation.

Thus, we may relate the vector space of quantum operators to a double
Hilbert space with respect to that of quantum states. Since we have explored
the correspondence of the state-Hilbert space with classical phase space, it
is now natural to relate the double Hilbert space to a double phase space :
X = x− × x+ (see e.g., [29]). The operator |Q〉〉 should then correspond to
the Lagrangian plane Q = constant in the double phase space. This does
hold, within a minor adaptation, analogous to the use of the adjoint operator
in the definition of the Hilbert–Schmidt product. That is, we should define
Q = (q−, q+), but P = (−p−, p+) as coordinates of the double phase space
X = (P,Q).

A good reason for this is that then we include among the set of Lagrangian
surfaces in double phase space all the canonical transformations in single
phase space, x− → x+ = C(x−). This also transports closed curves, γ− → γ+,
so that we may rewrite the definition of a canonical transformation as

∮

Γ

P · dQ = 0 , (4.38)
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where Γ = (γ−, γ+). Thus, we may consider γ± as projections of the curve
Γ defined on the (2L)-dimensional surface, ΛC , which specifies the canonical
transformation, within the (4L)-dimensional double phase space, X = (P,Q).

It is worthwhile to consider the richness of structures in double phase
space. On the one hand, a canonical transformation defines a Lagrangian
surface as x+(x−), a one-to-one function. On the other hand, the product of
a Lagrangian surface, λ− in x− with another surface λ+ in x+, Λ = λ−⊗λ+,
is also Lagrangian in double phase space, but projects singularly onto either
of the factor spaces. In the case that both surfaces are tori, we obtain a double
phase space torus, τ = τ−⊗τ+, as if we had doubled the number of degrees of
freedom. (All Lagrangian surfaces will hereon be labeled τ , even when they
are not necessarily a torus; in the case that L = 1, τ is just a closed curve, γ.)
If L = 1, it will be a 2-D product torus, with the only difference that p− →
−p− in the present construction. If each Lagrangian surface corresponds to
a state, i.e., |ψ−〉 and |ψ+〉, then we represent |Ψ〉〉 = |ψ+〉〈ψ−| in the |Q〉〉
representation as

〈〈Q|Ψ〉〉 = 〈q+|ψ+〉〈ψ−|q−〉 . (4.39)

Therefore, the semiclassical approximation is just a superposition of terms of
the form

〈〈Q|Ψ〉〉 = AJ(Q) exp[iSJ (Q)/�] (4.40)

with
AJ(Q) = Aj−(q−)∗ Aj+(q+) (4.41)

and

SJ(Q) =
∮ Q

0

PJ(Q′) · dQ′ . (4.42)

Again this is in strict analogy to the construction of semiclassical product
states of higher degrees of freedom. Note that the projection of the double
Lagrangian torus onto P or Q is just the rectangle discussed previously for
product states, whereas the projections onto the planes, x− and x+, are
specially singular.

The semiclassical approximation for a unitary operator, Û , that corre-
sponds to a canonical transformation, C : x− → x+, has exactly the same
form, i.e., a superposition

〈〈Q|U〉〉 = 〈q+|Û |q−〉 = UJ(Q) exp[iSJ (Q)/�] , (4.43)

for each branch of the function PJ(Q) defined by the Lagrangian surface in
double phase space. Note that the situation with respect to projection sin-
gularities is now reversed, as compared to |Ψ〉〉. The fact that the projections
of the Lagrangian surface, ΛC , onto either x−, or x+ are both nonsingular
in no way guarantees that the projections onto the P or the Q Lagrangian
planes will be likewise free of caustics.

Conversely, any function, S(Q), is, at least locally, the generating function
of a canonical transformation through the implicit equations:
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∂S

∂Q
= P (Q) , or

∂S

∂q+
= p+ ,

∂S

∂q− = −p− . (4.44)

Here we recognize the standard generating functions S(q−, q+) in Goldstein
[16]. If S(Q) is quadratic, then these implicit equations will be linear, so
that the explicit transformation will result from a matrix inversion (if it
is nonsingular). There will be a single branch in S(Q) for such a symplectic
transformation, and it turns out that the semiclassical approximation is exact
in this case.

The well-known alternatives to these generating functions are usually ob-
tained by Legendre transforms. However, we can consider the π/2 rotation,
q+ → p+, p+ → −q+, times the identity in x−, as an example of canonical
transformation in double phase space: X → X ′. Then Q′ = (q−, p+) is also
a good Lagrangian plane that can be used as the new coordinate plane for
the description of ΛC . In the new coordinates, the implicit equations for the
canonical transformation are just

∂S′

∂Q′ = P ′(Q′) , or
∂S′

∂p+
= −q+ ,

∂S′

∂q− = −p− . (4.45)

The correspondence with a semiclassical state,

〈〈Q′|Ψ〉〉 = A′
J(Q′) exp[iS′

J (Q′)/�] , (4.46)

will be exact in the case of a symplectic transformation. Note that |Q′〉〉 is
a first example of an operator basis that corresponds to a set of parallel
Lagrangian planes in double phase space, which, nonetheless, have internal
coordinates that can be identified with a phase space on its own.

The crucial step is now to explore other kinds of canonical transformations
in double phase space [30]. In particular,

Q′ = x =
x+ + x−

2
, P ′ = y = J(x+ − x−) = Jξ . (4.47)

Here, the J symplectic matrix in single phase space is essential to canonize
what would be just a π/4 rotation. It accounts for the change of sign in the
p− coordinate. We will here have to bare the discomfortable situation that
the canonical coordinate in double phase space is y, but the geometrically
meaningful variable in single phase space is ξ, the trajectory chord , in the case
of continuous evolution. The coordinate x will be referred to as the centre.

If we consider the horizontal Lagrangian planes y = constant, each is
identified with a uniform classical translation. Thus, we have departed from
coordinate planes corresponding to dyadic operators to those planes in dou-
ble phase that describe canonical transformations and hence correspond to
unitary transformations. In this case, x− → x+ = x− + ξ are the group
of phase space translations, which include the the identity, i.e., the identity
plane is defined as ξ = 0.



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

180 A.M. Ozorio de Almeida

On the other hand, the vertical plane, x = 0, defines the canonical reflec-
tion through the origin, x− → x+ = −x− (or inversion), since all the chords
for this transformation are centred on the origin. Other vertical planes spec-
ify reflections through other points, x− → x+ = −(x− − 2x). The reflections
do not form a group on their own (no identity), but together with the trans-
lations they form the affine group of geometry [31].

Since there is an exact correspondence between linear canonical transfor-
mations and unitary transformations, each plane y = constant corresponds
precisely to the translation operator, T̂ξ, previously defined as . Notice that
this was written with a phase that is a skew product involving ξ, but we
could also use T̂ξ = exp(iy · x̂/�). In terms of the previous dyadic |Q〉〉 basis,
this is expressed as

T̂ξ =
∫

dq
∣∣∣
∣q +

ξq
2

〉〈
q− ξq

2

∣∣∣
∣ e

iξp·q/� , (4.48)

a symmetrized Fourier transform (see e.g., [32]).AU: Please check
the edit of the
sentence “Just as a
π/2 . . ..” for its
intended meaning.

Just as a π/2 rotation in single phase space, q → p and p→ −q correspond
to a Fourier transform, so the transformation between horizontal and vertical
planes in double phase space is also achieved by a full Fourier transform
(except for an annoying factor of 2L):

2LR̂x =
∫

dξ
(2π�)L

T̂ξ exp(
i

�
x ∧ ξ) . (4.49)

In terms of the dyadic |Q〉〉 basis, we have

2LR̂x =
∫

dξq

∣∣
∣∣q +

ξq
2

〉〈
q− ξq

2

∣∣
∣∣ e

ip·ξq/� , (4.50)

the complementary symmetrized Fourier transform to .
We are now free to switch from the usual (position) dyadic basis to the

unitary operator basis, |y〉〉 = T̂ξ:

〈〈y|A〉〉 = tr T̂−ξÂ = A(ξ) , (4.51)

where we use T̂−ξ = T̂ †
ξ . A(ξ) is the chord representation of the operator Â

(also referred to as the chord symbol). Notice that the chord basis includes
the identity operator, Î = |I〉〉 = |y = 0〉〉. To verify that (4.51) is indeed
the expansion coefficient for an arbitrary operator in the basis of translation
chords, we use

tr T̂ξ = (2π�)Lδ(ξ) = 〈〈y|I〉〉 (4.52)

(note the double phase space analogy with 〈p′|(p = 0)〉 = δ(p′) ), as well as
the quantum version of the group of translations:

T̂ξ2 T̂ξ1 = T̂ξ1+ξ2 exp [
−i
2�
ξ1 ∧ ξ2] (4.53)
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(see e.g., [33]). Then, the expansion,

Â =
∫

dξ
(2π�)L

A(ξ) T̂ξ , (4.54)

leads to

tr(T̂−ξÂ) = tr
∫

d
ξ

′
(2π�)L A(ξ′)T̂−ξT̂ξ′

=
∫

dξ′

(2π�)L
A(ξ′) exp

[ i
2�

ξ′ ∧ ξ
]
tr T̂ξ′−ξ

= A(ξ) .

(4.55)

The chord representation is thus a second example of a representation of
operators in terms of an operator basis that can be identified uniquely to a
phase space. Indeed, each chord corresponds to a Lagrangian surface in double
phase space and hence a particular uniform translation in single phase space.

The next representation will be based on phase space reflections, R̂x.
But first, it is worthwhile to examine some characteristics of these operators.
Unlike the translations, they do not form a group on their own, though they
combine with the latter to form the affine group. The products are [33]

R̂xT̂ξ = exp[− i

�
x ∧ ξ] R̂x−ξ/2 , (4.56)

T̂ξR̂x = exp[− i

�
x ∧ ξ] R̂x+ξ/2 (4.57)

and
R̂x2R̂x1 = exp[

2i
�

x1 ∧ x2] T̂2(x2−x1) . (4.58)

Except for the phases, these are just the classical relations. The last one is
specially interesting. Note that R̂2

x = Î, the identity, hence the (degenerate)
eigenvalues of R̂x must be either +1, or −1. Therefore, these operators are
Hermitian, as well as unitary.

Are they true observables? Consider the effect of R̂0 on the eigenstates of
the harmonic oscillator. Taking q → −q and p→ −p, leads to a change of sign
for all the odd states, while preserving the even states. In other words, the
latter are just the (+1)-eigenstates, while the odd states are (−1)-eigenstates.
Though it is hard to imagine measuring the parity of a particle, we saw in
Sect. 4.2 that the parity decomposition of even a classical wave can certainly
be effected. Measurements of the eigenvalues of this non-mechanical observ-
able are currently performed for single photons in optical cavities [34]. It is
true that these measurements are performed on a mode of the electromag-
netic field rather than a particle, but it only makes sense to discuss the parity
within a specific mode if it is quantized.
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Reflection operators are very strange observables as far as phase space
correspondence is concerned. It was discussed in Sect. 4.4 that usual ob-
servables correspond to smooth phase space functions and their eigenvalues
correspond to level curves if L = 1. This is just not the case of reflection
operators with their infinitely degenerate ±1 eigenvalues. In their dual role
as both unitary and Hermitian (observable) operators, reflections are almost
schizophrenic: They are perfectly ordinary unitary operators, corresponding
to Lagrangian planes in double phase space, but they do not correspond to
any smooth classical function in phase space, as expected of a mechanical
observable.

This should furnish sufficient motivation to investigate the representation
of arbitrary operators in terms of reflection centres. The assumption that

Â =
∫

dxA(x) 2LR̂x (4.59)

leads to

〈〈x|A〉〉 = tr (2LR̂x)Â = tr
∫

dx′

(2π�)L
A(x′)(2LR̂x)(2LR̂x′) = A(x) . (4.60)

This is the Weyl representation of the operator Â (also known as the Weyl
symbol). Once again we use half the coordinates of double phase space, within
a Lagrangian plane that is a phase space on its own, to describe a quantum op-
erator. This perception that we are really dealing with different phase spaces
for each operator representation was clearly stated in the excellent review by
Balazs and Jennings [35]. What was lacking was merely the identification of
each of these different phase spaces with a specific foliation of Lagrangian
planes in double phase space.

As far as unitary operators, Û , are concerned, the semiclassical limit of
the representations, either in terms of centres or chords, has exactly the same
form as for any other Lagrangian basis. For instance, the Weyl symbol will
be a superposition of terms, such as

U(x) = A(x) exp[iS(x)/�] , (4.61)

in terms of the centre action, defined as

S(x) =
∫ x

0

y(x′) · dx′ =
∫ x

0

ξ(x′) ∧ dx′ . (4.62)

For symplectic transformations, the Lagrangian surface is a plane, and so
there is only a single branch of the action function S(x), which is quadratic.
Then (4.61) is an exact representation of the corresponding quantum meta-
plectic transformation. However, in the general nonlinear case, there may be
caustics in the projection of the Lagrangian y(x′) surface onto the x-plane.
Recall that this is just the plane that defines the identity operator, Î (corre-
sponding to y = 0, or S = 0).
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For the canonical transformation generated by a Hamiltonian, H(x), it
turns out that the generating function has the limit [33]

Sε(x, t = ε) → −εH(x) +O(ε3) . (4.63)

There are no caustics for small times in the centre representation, since the
corresponding Lagrangian surface is nearly horizontal.

The smooth real Hamiltonian itself can be equated to the Weyl sym-
bol for the corresponding operator, Ĥ, within semiclassically small ordering
terms. This is the case of the Weyl representation for any observable that
corresponds classically to a smooth classical function of the points in phase
space [17]. Since we can always consider classical observables as infinitesimal
generators of motion through Hamilton’s equations, it is appropriate to pic-
ture them as functions on the y = 0 plane, so that the Hamiltonian vectors
form a field on this plane that indicates which way it will evolve. In con-
trast, the chord symbol for these smooth mechanical observables is not at
all smooth. This is because the chord and centre symbols are related to each
other through the Fourier transform,

A(ξ) =
1

(2π�)L

∫
dx exp

(
− i

�
ξ ∧ x

)
A(x) , (4.64)

just as the translation and reflection operators themselves in . This Fourier
transform takes the symbol for the identity, I(x) = 1, into I(ξ) = δ(ξ) and a
Taylor series in x into a series of derivatives of δ-functions. However, we shall
see in the next section that the chord representation of density operators
have very useful properties.

It is fitting to consider here another feature which distinguishes the re-
flection operators from mechanical observables. Far from being represented
by a smooth phase space function, their centre representation is just

Rx(x′) = 2−Lδ(x′ − x) . (4.65)

These singular functions cannot be interpreted as corresponding to classical
states (i.e., individual phase space points) because the R̂x have the eigenvalue
−1, so they are not density operators.

Probably the first to remark on the general structure of translations and
reflections underlying the Weyl and the chord representations were Gross-
mann and Huguenin [36]. There exists an exact correspondence, between
these operators of the affine quantum group, together with the unitary op-
erators of the metaplectic group with the classical transformations of the
inhomogeneous symplectic group [17]. In other words, all linear canonical
transformations, including reflections and translations, are exactly matched
by quantum unitary transformations. Thus, the unitary transformation, ÛC,
corresponding to x→ x′ = Cx, where C is a symplectic matrix, takes

R̂x → R̂′
x = Û†

CR̂xÛC = R̂x′ and T̂ξ → T̂ ′
ξ = Û†

CT̂ξÛC = T̂ξ′ . (4.66)
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This has the consequence that both the centre and the chord representa-
tions are invariant with respect to metaplectic transformations because the
transformed operator Â→ Â′ is represented by

A′(x) = tr ÛCÂ Û
†
CR̂x = tr Â Û†

CR̂xÛC = tr Â R̂′
x = A(x′) (4.67)

and, likewise, A′(ξ) = A(ξ′).
This section is concluded with some general formulae concerning these

representations. For the trace of an operator, we have the alternative forms:

tr Â = tr Î Â = 〈〈T̂ξ=0|A〉〉 = A(ξ = 0) =
1

(2π�)L

∫
dxA(x) . (4.68)

The adjoint operator, Â†, is represented by

A†(x) = [A(x)]∗ , or A†(ξ) = [A(−ξ)]∗ , (4.69)

where ∗ denotes complex conjugation. Thus, if Â is Hermitian, A(x) is real,
though A(ξ) may well be complex. The Weyl or chord symbols for products
of operators are not at all obvious (see e.g., [33]), but

tr Â2Â1 =
∫

dξ
(2π�)L

A2(ξ)A1(−ξ) =
∫

dx
(2π�)L

A2(x)A1(x) . (4.70)

4.6 The Wigner Function and the Chord Function

It is customary to alter the normalization of the centre and the chord symbols
for the density operator, ρ̂, so as to define

W (x) =
ρ(x)

(2π�)L
and χ(ξ) =

ρ(ξ)
(2π�)L

, (4.71)

respectively the Wigner function and the chord function. Combining with
the general definition of the Weyl representation and the expression for the
reflection operator, we obtain the original definition of W (x), proposed by
Wigner [37]. In both cases of , the representation of the trace of a product
leads to the expectation of any observable, Â, as

〈Â〉 =
∫

dxW (x)A(x) =
∫

dξ χ(−ξ)A(ξ) . (4.72)

The first integral is more interesting because A(x) is at least semiclassically
close to the classical variable, which tempts us to identify the Wigner function
with a nearly classical probability distribution. However, we will see below
that W (x), though real and normalized so



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

4 Entanglement in Phase Space 185

∫
dxW (x) = 1 , (4.73)

may well take on negative values.
The chord function behaves like a classical characteristic function, in as

much as the moments are

〈qn〉 = tr q̂n ρ̂ = (i�)n ∂n

∂ξn
p

(2π�)L χ(ξ)
∣∣∣
ξ=0

(4.74)

and
〈pn〉 = tr p̂n ρ̂ = (−i�)n ∂n

∂ξn
q

(2π�)L χ(ξ)
∣∣∣
ξ=0

. (4.75)

Taking the zeroth moment, we obtain the normalization,

1 = (2π�)L χ(0) , (4.76)

because tr ρ̂ = ρ(ξ = 0) = 1.
Shifting the phase space origin to 〈x〉 = (〈p〉, 〈q〉), we can define the

Schrödinger covariance matrix [38] just as its classical counterpart (4.7),
with δp2 = 〈p̂2〉, δq2 = 〈q̂2〉 and (δpq)2 = 〈(p̂q̂ + q̂p̂)/2〉. It is then obvious
that the expansion of the chord function at the origin is given by a quadratic
form

χ(ξ) = (2π�)−L − ξK ξ + . . . , (4.77)

and we can interpret the uncertainty ,

ΔK =
√

detK , (4.78)

as proportional to the volume of the ellipsoid: ξK ξ = 1. Evidently, this
volume is invariant with respect to symplectic transformations, so that ΔK

is a symplectically invariant measure of the uncertainty of the state.
The projection of the Wigner function

∫
dp W (p,q) = Pr(q) (4.79)

is a true probability for position measurements [37]. Furthermore, the invari-
ance of the chord and the centre representations with respect to symplectic
transformations then guarantees that the projection of the Wigner function
along any set of Lagrangian planes p′ supplies the probability distribution
for the conjugate variable q′. In particular, the probability Pr(p) results from
the projection of W (p,q) with respect to q. All these planes are Lagrangian,
so it follows that the projection of the Wigner function onto any Lagrangian
plane in phase space is a probability distribution for the corresponding vari-
able. It may appear somewhat contrived, as far as measurement is concerned,
to consider general linear combinations of position and momentum. However,
it should be recalled that these observables will evolve from an initial position
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for the motion driven by any quadratic Hamiltonian, even including free mo-
tion through a laboratory. The reconstruction of the Wigner function from a
suitable set of these marginal distributions is known as quantum tomography.
This is achieved through the Radon transform (see e.g., [39]).

It is equally remarkable, but less well known, that the characteristic func-
tion corresponding to the marginal probability distribution for positions is
obtained by merely taking a section of the chord function:

∫
dq Pr(q) exp

(
− i

�
ηq · q

)
= (2π�)L χ(0, ηq) . (4.80)

Since the chord function is also symplectically invariant, it follows that the
characteristic functions for all the probability distributions, which result from
Wigner projections onto Lagrangian planes, are equal to the corresponding
sections of the chord function.

So far, we have emphasised the seemingly classical aspects of the Wigner
function. However, it must be remembered that the Weyl representation is
defined in terms of a very anomalous observable, as far as classical correspon-
dence is concerned. In order to reveal the full quantum nature of the Wigner
function, let us divide the Hilbert space of quantum states into even and odd
subspaces for a given reflection operator, R̂x. This is achieved through the
projection operator introduced by Grossmann [40] and Royer [41],

P̂x
± =

1
2

(
1± R̂x

)
, (4.81)

so that, in its turn, we can express each reflection operator as the superposi-
tion of this pair of projections onto the even and the odd subspaces:

R̂x = P̂x
+ − P̂x

− . (4.82)

But
tr ρ̂ P̂x

± = Prx± (4.83)

is just the probability of measuring R̂x to have the eigenvalue ±1, so it follows
that [41]

W (x) =
1

(π�)L
[Prx+ − Prx−] =

1
(π�)L

[2Prx+ − 1] . (4.84)

We thus find that the Wigner function does not admit the interpretation as a
probability distribution in phase space because it can certainly be negative.
Even so, it is a simple linear function of a distribution of probabilities of
positive eigenvalues for all possible reflection measurements. Its maximum
possible value (π�)−L is attained for any point, x, such that P̂x

+ ρ̂ = ρ̂,
whereas the commutation of the density operator with P̂x

− specifies a phase
space point where W (x) = −(π�)−L.

Let us now investigate the effect of reflections and translations on a den-
sity operator. Evidently, the centre and chord representations are specially
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suitable for this purpose. In the case of a phase space translation by the
vector, η, i.e., ρ̂η = T̂η ρ̂ T̂−η, the respective Wigner and chord functions
become

Wη(x) = W (x− η) and χη(ξ) = eiη∧ξ/� χ(ξ) , (4.85)

which shows that, unlike the Wigner function, the chord function is not gen-
erally real. The sensitivity of a state to translations is described by the phase
space correlations of a given density operator, defined as [32]

C(ξ) = tr ρ̂ T̂ξ ρ̂ T̂
†
ξ

= (2π�)L

∫
dxW (x)W (x− ξ)

= (2π�)L

∫
dη eiη∧ξ/� |χ(η)|2 .

(4.86)

From the reciprocal relation that supplies the intensity of the chord function
as the Fourier transform of these correlations and the normalization condition
, we see that

∫
dξ C(ξ) = (2π�)3L|χ(η = 0)|2 = (2π�)L . (4.87)

So, even though these correlations are defined in terms of classical translations
in phase space, they are purely quantum and disappear in the classical limit.
However, if we fix � and adopt this constant as our phase space scale, then
we can picture C(ξ) as a classical-like phase space distribution for which the
characteristic function is just |χ(ξ)|2.

Specializing to the case of a pure state, ρ̂ = |ψ〉〈ψ|, we find that

〈ψ|T̂ξ|ψ〉 = (2π�)Lχ(−ξ) , (4.88)

so that the phase space correlations take the form [32]

C(ξ) = |〈ψ|T̂ξ|ψ〉|2 = (2π�)2L|χ(ξ)|2 . (4.89)

Thus, for instance, in the case that ξ = (0, ξq), the phase space correlations,
C(ξ), are just the usual spacial correlations inferred from neutron scattering
experiments. Nonetheless, we must be careful to distinguish between phase
space correlations and the correlations between the quantum measurements
of observables defined on the different components of a bipartite system, such
as the CHSH inequality. For a pure state, (4.89) is the square modulus of the
expectation for a translation, which is not a quantum observable. However,
(4.86) defines the phase space correlation in the same way as for a classical
distribution.

The chord function always assumes its maximum value 1/(2π�)L at the
origin. But also an average of overlaps cannot exceed one, so χ(0) is the
maximum even for mixed states. As for the correlations, we always have
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tr ρ̂2 = (2π�)L

∫
dx [W (x)]2 = (2π�)L

∫
dξ |χ(ξ)|2 = C(0) , (4.90)

being that tr ρ̂2 = 1 for pure states. But consider a mixture of orthogonal
states,

ρ̂ =
∑

j

Pr(n) |n〉〈n| , (4.91)

then the purity
C(0) =

∑

j

Pr(n)2 ≤ 1 . (4.92)

Another form in which this quantity appears is the linear entropy : 1 −
tr ρ̂2. This may be considered as a first-order expansion of the von Neumann
entropy :

−tr ρ̂ ln ρ̂ = −
∫

dxW (x) ln[(2π�)L W (x)] , (4.93)

a quantum version of the classical Shannon entropy. In [32], the correlations
were normalized by the purity so as to be always unity at the origin, but it
is convenient to include this quantity as a special case of the correlations.

General invariance with respect to Fourier transformation characterizes
the correlation in the case of pure states. Indeed, inserting the above expres-
sion in the definition of the phase space correlation , we obtain [32]

C(ξ) =
∫

dη
(2π�)L

eiη∧ξ/� C(η) . (4.94)

This is a remarkable property of all pure states and is in no way restricted
by special symmetry properties that will be shown to relate certain Wigner
functions to their respective chord functions. An immediate consequence is
that oscillations of the phase space correlation of a pure state involving a large
displacement, ξ, are necessarily bound to small ripples on the scale, |ξ|−1,
in the direction, Jξ. Of course, these small-scale oscillations of the phase
space correlations, which have been attractively described as subplanckian
[42], show up in the pure state Wigner function because of (4.86).

The Fourier invariance condition (4.94) includes as a special case the more
familiar one obtained by tracing over the full pure state condition ρ̂2 = ρ̂. It
follows that the difference of both sides of (4.94) for each chord ξ generalizes
(4.92) as a measure of the degree of purity of a state. All the same, the loss
of the phase information in C(ξ), but contained in the chord function, would
seem to imply that these are necessary conditions, whereas the full sufficient
condition of purity is ρ̂2 = ρ̂, which is expressed in the chord representation
as [33]

∫
dη χ(η) χ(ξ − η) eiξ∧η/2� =

∫
dη χξ/2(η) χ(ξ − η) = χ(ξ) (4.95)
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with χξ/2(η) defined by (4.85).3 However, the particular condition C(0) = 1
is indeed a sufficient condition, because, for any mixture of pure states, ρ̂ =∑

n Pr(n)|ψn〉〈ψn|, we obtain

tr ρ̂2 = 1−
∑

n�=n′

Pr(n)Pr(n′)[1− |〈ψn|ψn′〉|2] . (4.96)

A single phase space point does not correspond to any pure state in Hilbert
space. The only pure states that are classical-like, i.e., have positive Wigner
functions, are either coherent states, or their image by a symplectic transfor-
mation [43, 44].

Let us now consider the effect of measuring a general phase space reflec-
tion, R̂x. The density operator, ρ̂, will be projected by P̂x

±, defined by , onto
either the even or odd subspace for this particular reflection:

ρ̂x± =
P̂x
± ρ̂ P̂x

±

tr ρ̂ P̂x
±
. (4.97)

The Weyl symbol for ρ̂ P̂x
± defines the symmetric Wigner function, W±

x (x′),
within a normalization factor, so that, using the group relations (4.56), (4.57)
and (4.58), we obtain [45]:

W±
x (x′) = (π�)−Ltr R̂x′ ρ̂x±

=
W (x′) +W (2x− x′)± ! 2(L+1) e2i x′∧x/� χ(2(x′ − x))

2 [1± (π�)L W (x)]
,

(4.98)

where ! denotes the real part of a number. It follows that the Wigner function
and the chord function for a reflection symmetric density operator are trivially
related. Shifting the origin of phase space to the symmetry point leads to [32]

W±
0 (x) = ± 2Lχ±

0 (−2x) . (4.99)

Thus, all Wigner functions for density operators that commute with a reflec-
tion symmetry attain the largest amplitude at the symmetry point, but this
will be negative in the case of odd symmetry.

Let us consider some standard examples of Wigner and chord functions.
All the following cases are related to eigenstates of a harmonic oscillator with
one degree of freedom and unit mass.

(i) Coherent states: the Wigner function is just a Gaussian centred on η,

Wη(x) =
1
π�

exp
[
−ω

�
(q− ηq)

2 − 1
�ω

(p− ηp)
2

]
ω=1−→ 1

π�
e−(x−η)2/� ,

(4.100)
3 For distributions Pr(n) over eigenstates |n〉 of an observable with discrete spec-

trum, the condition Pr(n)2 = Pr(n) also singles out a pure state, Pr(n) = δn,m,
but this condition is not generalizable to a continuous spectrum.



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

190 A.M. Ozorio de Almeida

whereas

χη(ξ) =
1

2π�
exp

(
iη ∧ ξ

�

)
exp

[

−ω
�

(
ξq
2

)2

− 1
�ω

(
ξp
2

)2
]

ω=1−→ 1
2π�

eiη∧ξ/�e−ξ2/4� .

(4.101)

So, any translation of the coherent state merely alters the phase of the Gaus-
sian chord function that sits on the origin. The coherent states, or more
generally all equivalent Gaussian states obtained from them by symplectic
transformations, are the only examples of pure states for which the Wigner
function is nowhere negative [43]. This is one of the reasons why these are
sometimes considered to be the most classical of pure quantum states. Since
the projection of a Gaussian is also a Gaussian, the measurement of position,
or any other Lagrangian phase space coordinate, does not display interference
fringes. The fact that the uncertainty, Δ = δpδq = �, is minimal allows us to
interpret them as quantum phase space points.

(ii) A superposition of a pair of coherent states |η〉 ± | − η〉 is sometimes
known as a Schrödinger cat state. Its Wigner function is4

W±(x) =
1

2π� (1± e−η2/�)

×
[
e−(x−η)2/� + e−(x+η)2/� ± 2e−x2/� cos

(
2
�
x ∧ η

)]
. (4.102)

It consists of two classical Gaussians centred on ±η and an interference pat-
tern with a Gaussian envelope centred on their midpoint. The frequency of
this oscillation increases with the separation |2η|. In Fig. 4.6, the displace-
ments ±η have been chosen as (±3,±3). The phase of the pair of coherent
states merely shifts the phase of the interference fringes, so that the midpoint
is an absolute maximum for W+(x) and an absolute minimum for W−(x).
It might be supposed that for small η → 0, we would have W+(x) > 0 for
all x, but it is easy to verify that there are very shallow negative regions far
removed from the classical superposed Gaussians, in agreement with [43, 44].
The interference pattern of the Wigner function does not survive the projec-
tion orthogonal to η: In this direction, the interference disappears to produce
a purely classical pattern. Conversely, the projection along η is marked by
interference fringes.

For the chord function,

χ±(ξ) =
1

4π� (1± e−η2/�)

×
[
e−(ξ/2−η)2/� + e−(ξ/2+η)2/� ± 2e−ξ2/4� cos

(
1
�
ξ ∧ η

)]
, (4.103)

4 Here and below we set ω = 1.
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Fig. 4.6. The Wigner function for the Schrödinger cat state displays a pair of
classical Gaussians, one for each coherent state, and a third Gaussian modulated
by interference fringes halfway between them. The chord function is a mere rescaling
of the Wigner function if the midpoint lies on the origin

this same configuration has to be reinterpreted. Now the local phase space
correlations of the individual coherent states, as in (i), are placed in the neigh-
bourhood of the origin, where they interfere, while their cross-correlation
generates new Gaussians centred on the separation vectors ±2η. The general
case of coherent states |η1〉 and |η2〉 merely leads to Gaussians centred on
±(η1 − η2) with addition of the phase factor exp[i(η1 + η2) ∧ ξ/2�].

Recalling that the phase space correlations of a pure state are just the
square modulus of the chord function, we can immediately verify the general
relation between large- and small-scale structures in the case of Schrödinger
cat states. Indeed, the spacial frequency of the oscillations of the chord func-
tion increases directly with the separation of the pair of coherent states.

The particular superpositions of coherent states, |+〉 and |−〉, are respec-
tively even and odd eigenstates of the parity operator R̂0, i.e., reflection about
the origin. Therefore, they are the two possible states that could be produced
by a parity measurement effected on the single coherent state |η〉. Thus, the
parity measurement would generate a sizable probability of finding a particle
near x = −η, even though this was most unlikely before the measurement.
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The states |±〉 are orthogonal, even though the coherent states, |η〉 and
| − η〉, are not. It is true that such a pair of coherent states will be nearly
orthogonal if η is large enough and thus considered to form a qubit. Within
this approximation, the symmetrical states would then be a mere unitary
transformation of a single qubit. However, no approximation is needed in
this process of carving a qubit from an infinite-dimensional system, if we use
|±〉 as the original basis states. We would then consider a common garden
coherent state to be the superposition of a symmetrical pair of Schrödinger
cats. (Is there some approximation involved?) Indeed, this generation of a
qubit by a reflection is not limited to coherent states, but could in principle
be realized for any unsymmetrical initial state.

(iii) Fock states, |n〉, i.e., the excited states of the harmonic oscillator,
also have reflection symmetry with respect to the origin. Thus, from the
exact Wigner function, first derived by Grönewold [46],

Wn(x) =
(−1)n

π�
e−x2/�Ln

(
2x2

�

)
, (4.104)

where Ln is a Laguerre polynomial, we obtain the chord function

χn(ξ) =
e−ξ2/4�

2π�
Ln

(
ξ2

2�

)
. (4.105)

It is interesting to note that the symmetry centre, which produces the maxi-
mum amplitude of the Wigner function, is nowhere near the classical manifold
with energy En =

(
n+ 1

2

)
�ω. However, this point lies in a region of narrow

oscillations, so that it does not affect the average of smooth observables.
Figure 4.7 shows the Wigner function for the Fock state with n = 2; the ori-
gin is a maximum because of the positive parity. The unfolding of this peak
for nonsymmetric Wigner functions is discussed in Sect. 4.10.

The Wigner function exhibits the interference fringes for the measurement
of any variable ap+bq. In the case of the Fock state, these are always present.
A simple way to see this is that any direction for the projection will be
somewhere tangent to each of the continuous curves that form the Wigner
function fringes. These regions dominate the projection. This example thus
illustrates the necessity for the Wigner function to have negative regions:
This is the only way that interference can result from a mere projection in
phase space.

The Fock states are an example of a complete parity basis, which is even
or odd according to the state label, n. Hence, if a pure state, |ψ〉, is specified
in this basis, then

Wψ(0) =
1
π�

∑

n

[
|〈2n|ψ〉|2 − |〈(2n+ 1)|ψ〉|2

]
. (4.106)

Such a decomposition can in principle be achieved for general arguments of
the Wigner function, but then it is necessary to translate the whole Fock state
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Fig. 4.7. The Wigner function for the n = 2 Fock state. The classical Bohr-
quantized circle lies just outside the maximum of the outer fringe. The chord func-
tion is just a rescaling of the Wigner function

basis instead of just the ground state, as in the definition of coherent states.
If we similarly translate the Hamiltonian, it will commute with R̂x instead of
commuting with R̂0. The eigenstates of all such Hamiltonians will form a good
odd–even basis. The difficulty with defining a semiclassical correspondence
for both these classes of eigenstates is that the odd and even Bohr-quantized
curves approach each other without a limit as � → 0.

All the above examples are singled out by some point of reflection symme-
try, which needs to be chosen as the origin for the chord function to be real.
The chord function must assume its maximum value 1/(2π�)L at the origin,
whatever the symmetry, because of normalization. The Wigner amplitude,
|W (x)|, need not have such a prominent peak in general. However we shall
see in Sect. 4.10 that the large-scale features of the semiclassical forms of the
Wigner function and the chord function maintain a mutual correspondence,
even in the absence of a reflection symmetry.

It is important to note that the commutation, [ρ̂, R̂0] = 0, guarantees
that W (x) is a symmetric function with respect to (classical) reflection at the
origin. This is a consequence of the fact that if ρ̂R = R̂ ρ̂ R̂, then WR(x) =
W (R(x)), the classical reflection of the argument. However, it is the maximum
(or minimum) value at the origin which guarantees that the density operator
is pure with respect to parity, i.e., it is either ρ̂+, or ρ̂−. Indeed, even though
a mixture of an even density and an odd density (i.e., ρ̂ = c+ρ̂+ + c−ρ̂−) will
trivially satisfy [ρ̂, R̂0] = 0, we see that W (0) = (c+ − c−)/(π�)L will not be
maximal.
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Perhaps the converse property is of even more interest: If a Wigner func-
tion is symmetric about the origin, but |W (0)| < (π�)−L, then the state must
be a mixture. After all, if it is a mixture of parities, it cannot be a pure state.
It is only if the mixture is restricted to states of the same parity that it will
not be detected by W (0). There are many measures of degrees of mixedness,
or impurity, but it is specially nice to be able to spot this property by a mere
glance at the Wigner function. Furthermore, the Wigner function, i.e., the
parity decomposition, is a measurable property [28, 34, 47].

The Wigner function may be considered as a field of probabilities for
parity decompositions in phase space. Each reflection separates the infinite-
dimensional Hilbert space into a pair of orthogonal components. If we just
consider a single reflection, this goes a long way to reducing the Hilbert
space to that of a single qubit, a two state system. No matter how classical
the appearance of the Wigner function (i.e., it may be smooth and positive),
it is always fully quantum as far as parity measurements are concerned. The
situation is quite different, for instance, for position measurements. Then
there is an important difference between the Wigner function for a pure
Schrödinger cat state and a mixture of cats with different phases. This is
revealed by the fine interference fringes between the two classical regions,
but it is even more clearly displayed by the pair of correlation peaks far from
the origin of the chord function. The relation between these features and
entanglement is discussed in Sect. 4.8.

There is a vast literature concerning the Wigner function. Only a few
topics have been mentioned here, and it has been necessary to leave out even
as relevant a topic as quantum tomography. The adaptation of the Wigner
function for finite Hilbert spaces is of special relevance for quantum com-
puting and quantum information theory. Then the rule that each quantum
state corresponds to a volume of (2π�)L in classical phase space restricts
the overall phase space volume. Thus, one must first face a choice of the
topology in which to compactify phase space. It turns out that the simplest
choice is a torus, though single qubits are more naturally displayed on a
Bloch sphere. In spite of the intrinsic interest in many of the aspects of finite
space Wigner functions [48, 49], there is no overall agreement on the choice
of Wigner function properties to emphasise. Not all formalisms lead to a cor-
responding natural definition of a conjugate chord function as in [50], nor is
there an overall preoccupation with invariance with respect to those symplec-
tic transformations which preserve the torus topology of phase space [51]. A
final difficulty concerns the appearance of ghost images and dimensionally
dependent features [52].

So far nothing has been said of an alternative phase space representation,
the Husimi function [53, 54]. Defined in terms of coherent states |η〉 as

ρH(η) = 〈η|ρ|η〉 = tr ρ |η〉〈η| , (4.107)

it can be interpreted as a smoothed Wigner function,
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ρH(η) =
∫

dxWη(x)W (x) (4.108)

because of (4.70). The lack of purity of a state can be described in terms of
the Wehrl entropy ,

SW = −(2π�)L

∫
dη ρH(η) ln ρH(η) . (4.109)

According to Wehrl’s inequality [55, 56] (see also [57]), the Wehrl entropy is
always bounded from below by the von Neumann entropy (4.93). For more
recent developments concerning the Wehrl entropy, see e.g., [58].

The Husimi function is most appropriate for the study of quantum chaos,
because it highlights the classical region. But such a downplay of the quantum
interferences, achieved by coarse graining the Wigner function, is not what
one would ordinarily seek in quantum information theory. In a way, this is
just the opposite of the chord function, which squashes all classical structure
to the neighbourhood of the origin, so as to display the purely quantum
coherences. It is remarkable that both these antithetical representations are
intimately related to the translation operators, since the Husimi function for
a pure state, ρ̂ = |ψ〉〈ψ|, can be rewritten as

ρH(η) = |〈ψ|η〉|2 = |〈ψ|T̂η|(η = 0)〉|2 . (4.110)

Hence, the basic difference with respect to Cη in is the exchange of |0〉, the
Gaussian ground state of the harmonic oscillator, for |ψ〉 itself.

A further comment is that the quantum interferences are displayed by the
isolated zeroes of Husimi functions [59], in the case that L = 1. A uniform
distribution of zeroes has been used to characterize the eigenstates of classi-
cally chaotic systems. Even though this is of great theoretical interest, these
zeroes are usually located in regions where the Husimi function is already
tiny, so that they may be very hard to compute. For instance, in the case
of the cat state (4.102) with small η, they are found in the shallow negative
regions where |W+(x)| is exponentially small.

4.7 The Partial Trace: Sections and Projections

Recall that the representation of operators, Â = |A〉〉, in a given basis, such as
〈〈Q|A〉〉, corresponds to the foliation of the double phase space, X = (P,Q),
by a set of Lagrangian planes, Q = constant. Performing linear canonical
transformations in double phase space, we are free to choose the alternative
coordinate planes, Q = (q−, q+), or Q = x, or Q = y = Jξ among others. In
all cases, it is the fact that

〈〈Q′|Q〉〉 = δ(Q′ −Q), (4.111)
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which permits us to identify the expansion coefficient in

Â = |A〉〉 =
∫

dQA(Q) |Q〉〉 (4.112)

with 〈〈Q|A〉〉.
Let us now assume that the (single) phase space is itself a product of a

pair of phase spaces, X = X1⊗X2, each with 2Lj dimensions, and that these
correspond to Hilbert spaces, Hj , so that H = H1⊗H2. Then we can always
decompose the Lagrangian planes chosen as a basis for double phase space as
the product Q = Q1 ⊗ Q2, corresponding to operators |Q〉〉 = |Q1〉〉 ⊗ |Q2〉〉.
Thus the complete |Q〉〉 representation becomes

Â = |A〉〉 =
∫

dQ1dQ2 A(Q1, Q2) |Q1〉〉 ⊗ |Q2〉〉 . (4.113)

The definition of the partial trace is then

tr2 Â = tr2 Î2 Â =
∫

dQ1dQ2 A(Q1, Q2) |Q1〉〉 〈〈I2|Q2〉〉 , (4.114)

so that
A1(Q1) =

∫
dQ2 A(Q1, Q2)〈〈I2|Q2〉〉 (4.115)

defines the |Q1〉〉 representation of a reduced operator Â1, which acts on the
Hilbert space H1. It is well known that in the case of the density operator
ρ̂, the reduced operator ρ̂1 describes the same probability as the full density
operator for all measurements concerning the subsystem-1.5

The different forms of the partial trace depend essentially on the Hilbert–
Schmidt product of each basis with the identity. In the case of the position
basis, we have

〈〈I|Q〉〉 = tr Î |q−〉〈q+| = δ(q− − q+) , (4.116)

so that

A1(Q1) =
∫

dq2−dq2+ A(Q1, Q2 =(q2−, q2+)) δ(q2− − q2+)

=
∫

dq2 A(Q1, (q2, q2)) .
(4.117)

Here, we should recall that,

A(Q1, (q2, q2)) = 〈q1−, q2| Â | q1+, q2〉 , (4.118)

in matrix notation.

5 A measurement on subsystem-2 only affects ρ̂1 if the information on the outcome
of the measurement is made available [6].
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In the centre representation, we have simply

〈〈I|x〉〉 = tr Î (2LR̂x) = 1 , (4.119)

leading to the phase space projection:

A1(x1) =
∫

dx2 A(x1,x2) . (4.120)

In the case of the density operator, the corresponding reduced Wigner func-
tion, W1(x1), is thus obtained from W (x) in the same way as a marginal
probability distribution is projected out of the full distribution .

The simplest choice turns out to be the chord representation. Then, |I〉〉 =
T̂ξ=0 is an element of the operator basis, so that

〈〈I|y〉〉 = δ(y) = δ(ξ) . (4.121)

Thus in this case, instead of projecting, we obtain the reduced operator
merely by slicing through the chord symbol:

A1(ξ1) = A(ξ1, ξ2 =0) . (4.122)

Of course, the reduced operator Â1 itself is insensitive to the procedure used
to obtain it within the various representations, but the ease of calculating
the reduction is a special bonus of the chord representation.

It should be recalled that the partial trace is invariant with respect to uni-
tary transformations performed internally within the factor Hilbert space H2:
Û = Û2⊗ Î1 (see, e.g., [6]). In the example where the subsystems are particles
that have separated by a large distance, then these are truly local transforma-
tions. In other words, if Â′ = Û ÂÛ−1, then tr2 Â′ = tr2 Â. This invariance
corresponds semiclassically to the freedom of performing canonical trans-
formations that leave invariant the x1 variables: (x1, x2) → (x1, x

′
2). This

also implies that only the double phase space corresponding to x2 changes:
(X1,X2) → (X1,X

′
2). If the canonical transformation is linear in the single

phase space, then both the centres, x, and the chords, ξ, are propagated in
the arguments of their respective functions by this same transformation.

Another point that is worth discussing concerns the completeness of the
operator representations. Notice that the restricted translation operators

|y1〉〉1 = T̂ ′
ξ1

= T̂ξ1 ⊗ Î2 (4.123)

are a subset of the translation operators used in the chord basis for the full
Hilbert space, H1 ⊗ H2. It follows that a representation in terms of the
restricted translation operators, T̂ ′

ξ1
, would not be complete. Likewise, we

may define the restricted unitary reflection operators,

|x1〉〉1 = 2L1R̂′
x1

= R̂x1 ⊗ Î2 , (4.124)
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but these do not belong to the centre basis for H1 ⊗H2. Even so, we may
also define directly the reduced operator Â1 as

Â1 =
∫

dx1 A1(x1) |x1〉〉1 , (4.125)

with
A1(x1) = tr Â (2L1R̂′

x1
) . (4.126)

Let us now specialize to density operators. In the case of the chord func-
tion, we must take care of the normalization, which depends on the number of
degrees of freedom. Hence, the validity of between the chord representation
of density operators ρ(ξ) and ρ1(ξ1) implies that the reduced chord function
is

χ1(ξ1) = (2π�)L2 χ(ξ1, ξ2 =0) . (4.127)

Clearly, χ1(ξ1) is the Fourier transform of W1(x1). Since the definition of
phase space correlations is valid for the reduced system, we obtain the re-
duced correlations as a projection of the correlations of the entangled pure
state:

C1(ξ1) = tr ρ̂1 T̂(ξ1,0) ρ̂1 T̂
†
(ξ1,0)

= (2π�)L1

∫
dη1 eiη1∧ξ1/� |χ1(η1)|2

= (2π�)L1

∫
dη1dη2 eiη1∧ξ1/�δ(η2) |χ(η)|2

=
∫

dξ2
(2π�)L2

C(ξ) .

(4.128)

It should be recalled that the relation between the Wigner function and the
chord function mimics that between a classical probability distribution and
its characteristic function. The definition of correlations and the classical
marginal distributions also goes through as above. Therefore, the property
that the correlation of the reduced state for a given displacement, ξ1, is just
the integral over all correlations in the larger space over displacements that
share this component also holds for classical probability distributions. This
relation does not depend on the full density operator being a pure state.

All the representations that we have been discussing will factor in the
case that ρ̂ = (|ψ1〉 ⊗ |ψ2〉)(〈ψ2| ⊗ 〈ψ1|) is a product pure state. Thus we
obtain product Wigner functions,W (x) = W1(x1)W2(x2), and product chord
functions, χ(ξ) = χ1(ξ1) χ2(ξ2). These relations may be interpreted in terms
of average values of the basis operators, i.e., 〈R̂x〉 = 〈R̂′

x1
〉 〈R̂′

x2
〉 and 〈T̂ξ〉 =

〈T̂ ′
ξ1
〉〈T̂ ′

ξ2
〉. Thus, a sufficient criterion for the existence of entanglement would

be that either of these equalities not hold for some centre x or some chord ξ.
Curiously, it is not the generation of cross-correlations that is usually

taken as a measure of entanglement, but instead the loss of correlations of the
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reduced density operator. Its von Neumann entropy (4.93) is often referred
to as the entanglement. Expanding this to first order, results in the linear
entropy of a partial trace of the full density operator,

1− tr ρ̂2
1 = 1− C1(0) , (4.129)

recalling (4.86). The square of this last expression is the concurrence, another
widely used entanglement measure (see, e.g., Sect. 2.4.2 or [60]). At first
sight, these are not obvious measures of overall entanglement, because we
should obtain the same measure by singling out instead the reduced density
operator for subsystem-2. But, it is a simple consequence of , the invariance
of the quantum correlations with respect to Fourier transforms for a pure
state, that

C1(0) =
∫

dξ2
(2π�)L2

C(0, ξ2)

=
∫

dξ2
(2π�)L2

∫
dη

(2π�)L
C(η) eiη2∧ξ2

=
∫

dη1

(2π�)L1
C(η1, 0) = C2(0) .

(4.130)

Reinterpreted in terms of Wigner functions,

∫
dx1 [W1(x1)]2 =

∫
dx2 [W2(x2)]2 , (4.131)

this is another remarkable property of pure quantum states, for it is highly
unusual for the second moment of a pair of marginal probability distributions
to display a similar equality. Indeed, it is not even generally true for product
distributions.

The focus on properties of the reduced density matrix makes sense when
it is recalled that the concept of entanglement involves separate measurement
on each of the components. The invariance of the partial traces with respect
to local transformations carries over to the above measures of entanglement.
Even better, it has been shown that it is possible to concentrate the entangle-
ment within a few elements of an ensemble of identical states, by performing
local measurements [61].

In terms of Husimi functions (4.108), it is natural to describe entangle-
ment in terms of the Wehrl entropy (4.109) for the reduced density operator.
Another way of describing entanglement is through the Schmidt decomposi-
tion . The corresponding Wigner and chord functions are then

W (x) = (π�)−L
∑

i,j

λiλj 〈ψi
1|R̂′

x1
|ψj

1〉〈ψi
2|R̂′

x2
|ψj

2〉 (4.132)
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and

χ(ξ) = (2π�)−L
∑

i,j

λiλj 〈ψi
1|T̂ ′

−ξ1
|ψj

1〉〈ψi
2|T̂ ′

−ξ2
|ψj

2〉 , (4.133)

recalling the definitions of the restricted reflection operators and the re-
stricted translation operators . In both cases, the partial trace over subsystem-
2 substitutes the second Dirac bracket by δi,j , so that

W1(x1) = (π�)−L1
∑

i

λi
2 〈ψi

1|R̂′
x1
|ψi

1〉 =
∑

i

λi
2 Wi(x1) (4.134)

and

χ1(ξ1) = (2π�)−L1
∑

i

λi
2 〈ψi

1|T̂ ′
−ξ1

|ψi
1〉 =

∑

i

λi
2 χi(ξ1) . (4.135)

Therefore, the reduced density operator is just a mixture of the factor states
in the Schmidt decomposition for subsystem-1, with probabilities specified
by the square of the Schmidt coefficients. The square of the concurrence is
then given by

1− tr (ρ̂1)2 = 1−
∑

i

λi
4 , (4.136)

in terms of the second moment of the weighing factors for the mixed state.
Note that, contrary to the Schmidt number, this is a well-defined entan-
glement measure for systems with infinite Hilbert spaces, if the above sum
converges. Clearly, the purity of subsystem-2 involves the same sum over
Schmidt coefficients, in agreement with our previous calculation (4.130).

Consider now the case that a subsystem can again be split up into a pair
of components. If the full original state was entangled, the reduced density
operator is not pure. Hence, it is an average over pure states. Obviously, this
cannot be a product state overall, but if all of the pure states are products,
the mixed state is not characterized as entangled, rather it is a separable
state. The problem with mixed states is that the decomposition into pure
states is not unique, so a state is considered separable if there exists any
decomposition where it is separated (see Sect. 2.2.2).

Let us now define a classical pure state as a δ-function in phase space.
Then all pure states, f(x) = δ(x), in a higher dimensional phase space will be
product states, because the higher dimensional δ-functions factor as δ(x) =
δ(x1) δ(x2). In this sense, the expression

f(x) =
∫
f(x′) δ(x− x′)dx′ (4.137)

can be reinterpreted as a classical separable state: Any probability distribu-
tion in phase space can be considered as a linear combination of products
of classical pure states. Thus, we can never consider a classical phase space
distribution to be entangled, no matter how strong the correlations may be
between variables pertaining to different subsystems.
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What if a mixed Wigner function for a bipartite state is everywhere posi-
tive? Can we mimic the above reasoning to conclude that there is no entangle-
ment? In general this is not so, because the function δ(x) does not represent
a density operator in the Weyl representation. It represents instead the re-
flection operator, which has an infinitely degenerate negative eigenvalue, as
discussed in Sect. 4.5. The closest that is possible is the coherent state (4.100),
which approaches a δ-function as � → 0, but imposes an extra smoothing on
the Wigner function for any combination of these pure states. Indeed, a gen-
eral superposition of coherent states is defined by a weight function, known
as the Glauber–Sudarshan P-function in quantum optics [8, 62, 63]. So, it is
the positivity of a P-function that guarantees a separable state, rather than
that of the Wigner function, because each coherent state can be factored.

To close this section, let us now study another kind of projection of the
Wigner function. Whereas, by projecting onto a component subspace we gen-
erate a reduced Wigner function, a projection onto a Lagrangian plane (4.79)
results in a probability density. All the coordinates of such a plane correspond
to commuting operators. In the case of a bipartite system, we can define this
Lagrangian plane by choosing some linear combination of the variables for
each subsystem, q′1 = α1p1 + β1q1 and q′2 = α2p2 + β2q2, so that each coor-
dinate, q′j , pertains to a different subsystem.

Consider now pairs of either–or measurements on both these variables,
i.e., we can define observables Ô1a, Ô1b, Ô2a and Ô2b which take the value
+1, for q′j in the interval ja, and −1 outside. In terms of projection operators
P̂ja, we have Ôja = 2P̂ja− Î and Ô1aÔ2a = 4P̂1aP̂2a− 2P̂1a− 2P̂2a + Î, with
similar formulae for the other products of commuting operators. Combining
the expectation values for these products in the form of the CHSH inequality
(4.17),

〈Ô1aÔ2a〉+ 〈Ô1aÔ2b〉+ 〈Ô1bÔ2a〉 − 〈Ô1bÔ2b〉

= 4
(
〈P̂1aP̂2a〉+ 〈P̂1aP̂2b〉+ 〈P̂1bP̂2a〉 − 〈P̂1bP̂2b〉

)
−4

(
〈P̂1a〉+ 〈P̂2a〉

)
+2 ,

(4.138)

we can now evaluate each expectation value on the right-hand side as a
definite integral of the probability density over some region of the (q′1, q

′
2)

plane. This is a purely classical set-up, so that by regrouping,

2− 4
(
P̂1a − 〈P̂1aP̂2b〉

)
− 4

(
P̂2a − 〈P̂1bP̂2a〉 − 〈P̂1aP̂2a〉

)
− 4〈P̂1bP̂2b〉 ≤ 2 ,

(4.139)
we rederive the CHSH inequality, because none of the terms with the factor
−4 can be positive.

We thus verify that the correlations measured among commuting pairs of
either–or observables of each subsystem lie within strictly classical bounds,
irrespective of any possible entanglement of their combined state. It makes
no difference whether, or not, the Wigner function has negative regions. The
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point is that we need to deal only with a single positive projection, which is a
true probability distribution. To obtain a violation of the CHSH inequality, we
must choose pairs of observables for each component which do not commute.
The correlation for a given choice of observables from each pair may still be
computed from the probabilities in the respective Lagrangian plane, but we
must use different planes in each of the four correlations. Then, if the overall
Wigner function that generates all these densities has negative regions, the
CHSH inequality may be violated, as discussed in the following section.

Apparently, there has not been much effort to relate the intuitively ap-
pealing picture of entanglement as the source of nonclassical correlations in
Bell inequalities to the technical entanglement measures appropriate to quan-
tum information theory. However, a recent paper by Cirone [64] bridges this
gap for finite-dimensional systems. The main point is that measurements are
restricted to projection operators for the factor states in the Schmidt basis.
It is then shown that the same concurrence, which was introduced in terms
of the partial trace, can be expressed as a sum over conditional probabilities
for measurements on either component.

4.8 Generating a Classical Entanglement:
The EPR State

We have seen how symplectic transformations correspond exactly to unitary
transformations in Hilbert space. Let us now examine how these can produce
entangled states, given that the initial state, ρ̂, is a product of states, each
represented by its Wigner function, Wj(xj), or its chord function, χj(ξj),
so that W (x) = W1(x1)W2(x2) and χ(ξ) = χ1(ξ1)χ2(ξ2). For the canonical
transformation to be linear, the classical interaction Hamiltonian H(x1, x2)
can only be bilinear in the phase space variables. A convenient choice is
H = p1q2− p2q1, which may be interpreted as angular momentum, L3, if the
degrees of freedom refer to Cartesian coordinates in a plane. This Hamiltonian
merely rotates both p and q coordinates in the argument of W (x) and χ(ξ).
Then, after a rotation by π/4, the density operator becomes ρ̂′, represented
by

χ′(ξ) = χ1(
ξp1 + ξp2√

2
,
ξq1 + ξq2√

2
) χ2(

ξp1 − ξp2√
2

,
ξq1 − ξq2√

2
) . (4.140)

Since the partial trace is specified by (4.127), a section of the chord function,
the reduced density for the first component becomes

χ′
1(ξ1) = (2π�)χ1(

ξp1√
2
,
ξq1√

2
) χ2(

ξp1√
2
,
ξq1√

2
) , (4.141)

in the chord representation.
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So as to emphasise how classical an entanglement can be, let us choose for
example initial Gaussian states, the product of harmonic oscillator ground
states, described by

Wj(xj) =
1
π�

exp
(
−ωj

�
q2

j −
1

�ωj
p2

j

)
(4.142)

or

χj(ξj) =
1

2π�
exp

(

−ωj

�

(
ξqj

2

)2

− 1
�ωj

(
ξpj

2

)2
)

. (4.143)

Thus, the probability distribution for positions,

f(q) =
∫

dpW (x) , (4.144)

is also a Gaussian with elliptic level curves that are also rotated if ω1 �= ω2.
In this case, the effect of rotation, followed by the partial trace, is just a
narrowing of the Gaussians in the chord representation:

χ′
1(ξ1) =

1
2π�

exp

[

−ω1 + ω2

2�

(
ξq1

2

)2

− 1
2�

(
1
ω1

+
1
ω2

)(
ξp1

2

)2
]

. (4.145)

Notice that normalization is maintained, because we still have χ′
1(ξ1) =

(2π�)−1 at the chord origin, but now the widths of the position Gaussian
and of the momentum Gaussian are obtained through different kinds of av-
erage. The overall narrowing indicates that this is no longer a pure state.

The Wigner function presents a more intuitive picture of a mixed state.
Taking the Fourier transform:

W ′
1(x1) =

1
πΔ

exp
[
− 2ω1ω2q2

1

�(ω1 + ω2)
− 2p2

1

�(ω1 + ω2)

]
. (4.146)

This still integrates to one, as demanded by normalization, but the Gaussian
is now broader, with the uncertainty Δ = (ω1 + ω2)/2

√
ω1ω2 > �, if ω1 �=

ω2. Therefore, this is not a pure state. The way that this example relates
entanglement to initial states and evolution, which may both be considered
classical, is even more extreme than those discussed in [65], which relies on
projections of the Husimi function, in the approximate role of phase space
probability density.

Another confirmation that this is not a pure state is that

tr (ρ̂′1)
2 = 2π�

∫
dx1 [W′

1(x1)]2 = 2π�

∫
dξ1 |χ′

1(ξ1)|2 < 1 , (4.147)
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and yet it might seem that this is just a freak result. After all, our state has
remained a smooth classical-like Gaussian throughout. There are none of the
quantum oscillations which are supposed to be the fingerprint of nonclassi-
cality: For a start, nothing would prevent us from identifying the original
Wigner function with a classical probability distribution. We then perform a
simple rotation with perfect classical correspondence and obtain a new Gaus-
sian, which pretends to be a quintessentially quantum entangled state! Have
we been led astray?

Let us go back to the full Wigner function, resulting from choice (4.142)
of Gaussians for the initial product state. After the π/4 rotation, this is just

W ′(x) =
(

1
π�

)2

exp
[
−ω1

2�
(q1 + q2)2 −

1
2�ω1

(p1 + p2)2
]

× exp
[
−ω2

2�
(q1 − q2)2 −

1
2�ω2

(p1 − p2)2
]
. (4.148)

In the extreme limit where ω1 → 0 and ω2 →∞, we would obtain a normal-
ized version of

W ′(x) = δ(q1 − q2) δ(p1 + p2) , (4.149)

which is just the Wigner function derived by Bell [66] for the original EPR
wave function [3], namely 〈q|ψ〉 = δ(q1 − q2). It so happens that the rotation
that transformed the coordinates of our initial state, i.e., the ground state
of an anisotropic plane harmonic oscillator, is essentially the same as the
transformation from the individual coordinates for a pair of particles into a
centre of mass, together with a relative internal coordinate. (These transfor-
mations differ only by local unitary transformations.) The EPR state is a
δ-function both in the relative position and in the total momentum, which is
the conjugate variable to the centre of mass.

Thus, the entanglement verified in our initial example implies that the
centre of mass is likewise entangled with the relative coordinate in the EPR
state. Perhaps, it is then even more surprising that the example that was
picked is in some sense classical, if we consider that the discussion of the
nonlocal and hence nonclassical nature of quantum mechanics started off with
the historic EPR paper [3]. The fact that the full Wigner function is positive,
not only allows us to interpret it as a classical probability distribution, but it
also ensures that there is a wide range of measurements that can be performed
on either component which may be considered as classical and hence local.
We already found in the previous section that any measurement of pairs
of either–or variables, Ô1a, Ô1b, Ô2a and Ô2b which take the value +1, for
general phase space coordinates, q′j , in the interval ja, and −1 outside, have
correlations that satisfy the CHSH inequality, even if the Wigner function has
negative regions. That was the case where the quantum observables which are
measured commute. The statement for positive Wigner functions, due to Bell
[66], is stronger: The inequality is then satisfied even if we choose different
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variables for each measurement, q′1a �= q′1b and q′2a �= q′2b, corresponding to
different Lagrangian planes in phase space and, hence, quantum operators
that do not commute. The argument is essentially the same as in the last
section, except that now we can obtain all the expectation values from the full
Wigner function, acting as a global probability distribution, instead of dealing
with different probability distributions, each restricted to the Lagrangian
plane specific to a given pair of variables.

Let us now reexamine our classically entangled states from the point of
view of the reduced reflection operators, R̂′

xj , defined as (4.126), that act
on each component and, in particular, the parity operators, R̂′

0j . Such ob-
servables do not correspond to smooth phase space functions in classical me-
chanics, indeed, the Weyl representation of these operators (4.65) is singular.
Nonetheless, parity, or reflection measurements can also be carried out on
classical waves, as discussed in Sect. 4.2, and the question now concerns the
possible correlations between measurements for different reflections carried
out on both components. The fact that the full Wigner function (4.148) is
symmetric with respect to the origin implies that the density operator com-
mutes with the full reflection operator, R̂0. However, W ′

1(0) < π�, so it does
not have pure parity, i.e., ρ̂′1 does not commute with R̂′

01. Hence, according
to the discussion in Sect. 4.6, there is a finite probability to obtain negative
(odd) parity, if such a measurement is performed on subsystem-1.

Perhaps this would not be so obvious a priori: The original state, repre-
sented by W0(x), is a pure state with pure positive (even) parity and this is
also a property of the rotated state. This property can be verified directly, or
it may be noticed that the driving Hamiltonian commutes with R̂0, so that
H(x) = H(R0(x)). But now we find that a measurement of the parity of
subsystem-1 has a finite probability to be negative. How is that?

Notice that the same also holds for subsystem-2: The derivation of the
reduced density operator, ρ̂′2, represented byW ′

2(x2) and χ′
2(ξ2), goes through

exactly as above. Therefore, there is also a finite probability of measuring
negative parity in subsystem-2. As was shown in Sect. 4.6, the fact that,
in both cases, the Wigner function is symmetric about the origin implies
that all the pure states, into which the mixed reduced density operator can
be decomposed, must have pure parity, but they are not all even. For this
reason, the Wigner function (4.146) had to be obtained as a Fourier transform
of the chord function; not a mere rescaling.

The crucial point is that the rotated state, ρ̂′, does not commute with
either of the restricted reflections defined by , i.e., R̂′

01 or R̂′
02, even though it

commutes with their product: R̂0 = R̂′
01R̂

′
02 = R̂′

02R̂
′
01. It should be recalled

that the reduced Wigner functions are entirely determined by and in terms
of the restricted reflections. Thus, to understand the results of measurements
of either R̂′

0j , we need a common basis for all these operators. This is just the
product of an even–odd basis for subsystem-1 and subsystem-2, for which we
obtain the table:
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even⊗ even→ even,

even⊗ odd→ odd,

odd⊗ even→ odd,

odd⊗ odd→ even.

(4.150)

Since ρ̂′ is even, it must be a superposition of the subset of basis states:
even ⊗ even or odd ⊗ odd. Furthermore, we now find that the evolved state
has a full parity correlation: If the measurement of R̂′

01 specifies even parity,
then this must be the outcome of a measurement on R̂′

02. Conversely, if one
of the subsystems has odd parity, then we know this to be the parity of the
other subsystem.

An initial product state of an even Schrödinger cat state with a coherent
state, which is rotated by π/4, is also susceptible to the foregoing analysis.
However, an odd symmetry Schrödinger cat would have perfectly anticorre-
lated odd–even, or even–odd subsystems. In the case of the rotated cat, the
evidence for entanglement is much more obvious. The pair of Gaussians is
not centred on either of the planes in the chord phase space pertaining to
the pair of subsystems. The partial trace that generates the reduced chord
functions is a section of the full chord function, so that it does not capture
these local maxima. Therefore, there is a deficit of phase space correlations
in the reduced density operators.

Returning to the original rotated squeezed state, or, equivalently, the orig-
inal EPR state, we must conclude that this is truly quantum and correctly
described as entangled, i.e., just as nonclassical as the spin states in the Bohm
version of EPR [7] that are commonly used to exemplify entanglement. The
secret lies in choosing the property to be measured: A position measurement
on one of the subsystems would not distinguish between this pure quan-
tum state and a classical distribution. However, a measurement of reflection
eigenvalues evokes a spin-like duality of this apparent classical state.

The violation of the CHSH inequality for reflection measurements of the
smoothed EPR state completes the evidence of its nonclassicality. Banaszek
and Wodkiewicz [67] first pointed out that the full pure state Wigner function
of a bipartite state is proportional to the correlation for relection measure-
ments on each subsystem: 〈R̂′

x1R̂
′
x2〉 = (π�)2W (x). This leads to a viola-

tion of the CHSH inequality for reflection measurements of the EPR state.
They also proposed a realistic experiment for this in quantum optics [68].
We have already verified the complete correlation for parity measurements
about the origin, which is in agreement with the maximal value that the full
Wigner function (4.148) attains there. Its decay for large x1 or x2 signifies
that 〈R̂′

x1R̂
′
x2〉 → 0, so that

CCHSH = 〈R̂′
01R̂

′
02〉+ 〈R̂′

01R̂
′
x2〉+ 〈R̂′

x1R̂
′
02〉 − 〈R̂′

x1R̂
′
x2〉 (4.151)

sinks from 2, its maximal classical value at the origin, to the limiting value
1. However, the origin is not the maximum of CCHSH(x1,x2), because the
lowest order expansion of
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(π�)2W ′(x) = 1− ω1

2�
(q1 + q2)2 −

1
2�ω1

(p1 + p2)2

− ω2

2�
(q1 − q2)2 −

1
2�ω2

(p1 − p2)2 + . . . (4.152)

leads to

CCHSH(x1,x2) = 2 + (ω1 − ω2)q1q2 +
(

1
ω1

− 1
ω2

)
p1p2 + . . . . (4.153)

Hence, the origin is a saddle point of CCHSH(x1,x2), which increases from
its maximal classical value along the directions q2 = −q1 and p2 = p1, if one
chooses the EPR conditions, ω2 >> ω1, i.e., if reflections are chosen in the
directions where the Wigner function decays rapidly.

So we find that nonlocal correlations between two subsystems can arise
even if the Wigner function for the full system is non-negative everywhere.
It would thus appear that there is no relation between fringes in the Wigner
function, where it attains negative values, and entanglement. The former
project as interference fringes for possible measurements, but this is quite
a different kind of nonclassicality than the delicate nonclassical correlations
resulting from entanglement. But even here, one must be wary! If the mea-
surements on the different components concern mechanical observables, nat-
ural for classical particles, then there is at least one case where negativity
of the Wigner function has been shown to produce nonclassical correlations.
Indeed, Bell [66] constructed an example where the CHSH inequality is vi-
olated for measurements on pairs of different variables,6 q′j = qj + tjpj and
q′j = qj + τjpj . The state for which this is proved is a variation of our rotated
state, where one of the factor Gaussians is substituted by the second excited
state of the harmonic oscillator.

It should always be remembered that entanglement is not an intrinsic
property, but only acquires its meaning within a specified basis, the compu-
tational basis, or the basis where measurements are made. In this respect,
it resembles semiclassical caustics, which depend on our choice of represen-
tation. If the physical realization of the foregoing example were the ground
state of a 2-D harmonic oscillator, then the rotation, which was found to
produce entanglement, could be dismissed as merely an inconvenient coor-
dinate transformation: Unless all measurements were to be restricted to the
original coordinate axes, it would not be relevant, though true, to say that
the rotated system became entangled, while the original system was a mere
product. In contrast, for the alternative physical interpretation of one of the
new coordinates as the centre of mass for a pair of particles, its entanglement
with the internal coordinate can be important.

6 Even though Bell refers to the transformation parameters as times, these should
be understood as specifications of the variables and hence of the planes onto
which the Wigner function is projected.
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4.9 Entanglement and Decoherence

The process of decoherence also results from the interaction of a pair of
systems: the (small) open system and a (large) system, which we call the
environment (see, e.g., Chap. 5). In contrast to the previous example, the
component over which we trace, so as to obtain the reduced density oper-
ator, is on a scale which defies anything but a statistical description. The
usual picture is that the environment lies somewhere outside, but it may
just as well consist of the internal degrees of freedom for the centre of mass
(CM) of a large system of particles. Exchanges between the large-scale mo-
tion and the internal variables lead to macroscopic energy dissipation as well
as decoherence of the quantum state for the CM.

Let us consider the simplest possible example of the decoherence of the
CM, because of its entanglement with internal variables. The CM for a system
of L identical particles, assumed to be distinguishable is Q = (q1+. . .+qL)/L.
The conjugate variable to Q is the total momentum, P = p1 + . . .+ pL. Let
us further imagine that they are each in the same single particle state, ρ̂, and
that these are independent, i.e., both the Wigner and the chord function are
products over those of the individual states. This may seem too restrictive,
because we should allow for different values of each average position 〈qj〉,
but we can redefine this as the origin for each j, so that we then measure Q
from 〈Q〉.

In the case of L = 2, X = (P,Q) is obtained from the rotated coordi-
nate in the previous section by a mere canonical rescaling of 2±1/2. It has
been repeatedly emphasised that all such symplectic transformations on the
argument of the Wigner or the chord function correspond exactly to unitary
quantum transformations. So let us now reverse this transformation in the
case of general L: We define Q′ = L1/2Q and P ′ = L−1/2P . Then, if the
individual Wigner functions, W (xj), were classical probability distributions,
the central limit theorem would imply that the distribution for X ′ = (P ′, Q′)
converges to

WL(X′) → [πΔK]−1 exp[−X′K−1X′/2], (4.154)

as L→∞, where we recall the definition of the Schrödinger covariance ma-
trix, K, in (4.7) and its determinant ΔK

2. It is remarkable that positivity is
not a necessary ingredient for the proof of the central limit theorem: In the
case of identical square-integrable pure state Wigner functions, it is shown by
Tegmark and Shapiro [69] that convergence onto a Gaussian again results. If
the state for the individual particles is not represented by a pure state Gaus-
sian, then the moments for this state will be such that ΔK > �. Therefore,
the centre of mass Wigner function, WL(X), is a broader Gaussian than is
permissible for a pure state and hence it must be a mixture. So, the CM of
independent particles with identical Wigner functions is generally entangled
with the internal phase space variables (which it has not been necessary to
describe explicitly). Curiously, the potential entanglement resulting from the
central limit theorem was overlooked in [69].
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How does this entanglement with the internal coordinates evolve in time?
It is easy to verify that free motion, generated by the Hamiltonian H =
p1

2+. . .+pL
2, will not alter ΔK. Thus the entanglement of the centre of mass

with the environment is invariant in this simple case. Let us suppose instead
that, though the particles do not interact, there is an external nonlinear field.
Furthermore, the particles are sufficiently separated and the field is smooth
enough so that it is legitimate to linearize the field locally around each 〈qj〉.
Then the Wigner function for each particle will evolve classically in different
ways. The restrictive form of the central limit theorem in [69] cannot be
applied in this case, but one can readily adapt Levy’s proof [70] to allow
for different Wigner functions, as long as the moments are finite and their
average values converge [71].

The averages of the moments resulting from the different evolutions of
many Wigner functions lead to a progressive loss of purity for the CM. Just
as in (4.146) for the simple example of the last section, the uncertainty, ΔK,
increases. On top of that, the central limit theorem supplies the statistical
ingredient for the decoherence process. It might appear strange to obtain
decoherence even for a system of noninteracting particles, but it should be
recalled that the CM momentum P , or P ′, appears linearly in each of the
terms, pj

2, in the kinetic energy, which accounts for the coupling to the
internal momenta.

So as to make contact with the theory of Markovian open systems, we can
now reinterpret this evolution of the reduced density matrix as a convolution
of the original (Gaussian) Wigner function for the CM with a broadening
Gaussian. For its Fourier transform, the chord function, this evolution is
merely the product of an initial Gaussian with another Gaussian that narrows
in time,7 This is exactly the result for quantum Markovian evolution of an
open system, in the case of quadratic internal Hamiltonian and linear coupling
to the environment [72].

The deduction of the canonical Lindblad equation (see Sect. 5.3.2 or [73]),

∂ρ̂

∂t
= − i

�

[
Ĥ, ρ̂

]
− 1

2�

∑

j

[
L̂j ,

[
L̂j , ρ̂

]]
, (4.155)

that governs the evolution of the density operator in the quantum Markovian
theory does not proceed by tracing out a larger system. All the same, the
mere fact that the evolution is entirely determined by a differential equation
precludes any delayed participation of previous motion. The Lindblad opera-
tors L̂j , account for the nonunitarity of the evolution, that is, they take the
part of the coupling to the environment. The Markovian approximation can
in principle include arbitrary (non-quadratic) internal Hamiltonians for the
system.

7 It must be recalled that the average CM evolution 〈X(t)〉 has been hidden by a
time-dependent coordinate transformation.
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The derivation of the Markovian approximation in the context of quantum
optics (the damped harmonic oscillator) was carried out originally by Agarwal
[74], but this is all in the language of complex phase space. The exact solution
of (4.155) in [74] and that of Diosy and Kiefer [75], for the free open particle,
are special cases of the general result in [72]: The chord representation of
(4.155) is particularly simple if the Lindblad operators are linear functions of
positions and momenta, L̂j = lj · x̂, and if the Hamiltonian is quadratic [72]:

∂χ

∂t
(ξ, t) = {H(ξ), χ(ξ, t)} − 1

2�

∑

j

(lj · ξ)2 χ(ξ, t) . (4.156)

Here, the first term is the classical Poisson bracket. The exact solution of this
equation factors into the unitary evolution of the chord function, undisturbed
by the Lindblad operators, and a narrowing Gaussian factor. In the Wigner
representation this becomes a Gaussian smudging of the unitarily evolving
Wigner function. It is remarkable that the Wigner function becomes positive
after a time that depends only on the parameters of the Lindblad equation,
regardless of the initial pure state [72, 75].

In our simple example of the evolution of the CM, the Lindblad opera-
tor for its one-dimensional motion should be chosen as the total momentum
P̂ , because this is the variable that couples to the internal motion, which is
hidden within the Markovian approximation. Even though the central limit
theorem supplied the Gaussian factor of the evolving chord function, the
overall Gaussian form for the evolving CM does not reflect the richness of
other possibilities for Markovian evolution. However, by considering the en-
tanglement of a small system with the CM of a large system and following the
treatment of the example in the preceding section, we obtain qualitatively
the general Markovian picture. This allows an interpretation of the Gaussian
smoothing as originating in the multiple small contributions contemplated in
the central limit theorem.

The standard way of going beyond the Markovian approximation, so as to
include memory kept by the environment of the previous motion of the sys-
tem, is to use the Feynman–Vernon functional [76], in the manner exploited
by Caldeira and Leggett [77, 78]. Some standard references for dissipation,
noise and decoherence from a quantum optics point of view are the books by
Louisell [79], Gardiner [80] and Weiss [81] (see also Chap. 5).

4.10 A Semiclassical Picture of Entanglement

A full semiclassical theory of entanglement is still a program for the future,
fascinating but difficult. Even so, several of the main elements for this con-
struction can be sketched in this concluding section.

For a start, one should note that it is feasible to fit semiclassical torus
states with Gaussian coherent states placed along the classical torus in a very
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satisfactory way [82]. The number of Gaussians required increases with a frac-
tional power of �

−1. The important qualitative feature is that the interference
fringes of the Wigner function, near the midpoint of the pair of Gaussians
composing a Schrödinger cat, have the same wavevector as the similar fringes
at the centre of a geometrical chord of the classical torus. Therefore, in both
cases we can describe very fine interference fringes related to long chords.
It also follows that our preliminary study of entanglement and decoherence
of cat states is not at all irrelevant for understanding the evolution of prod-
uct semiclassical states. Refinements of the fitting procedure allow even the
description of the diffraction effects near caustics [83].

Before analysing product states and their partial trace, recall that dyadic
operators, |ψ〉〈φ|, live in a kind of squared Hilbert space, which corresponds to
a double phase space. These operators were shown in Sect. 4.5 to correspond
to a product Lagrangian surface in double phase space, τψ ⊗ τφ, if each of
these states corresponds to a Lagrangian surface on its own right. Thus, the
projection operator, or pure state density operator, ρ̂ = |ψ〉〈ψ|, is just a
particular case of this general rule. If the state, |ψ〉, corresponds to a Bohr–
Sommerfeld quantized torus of L dimensions in a 2L-D phase space, then
the full density operator must correspond to a 2L-D product torus in 4L-
D double phase space. This is in exact analogy to the way that a product
torus describing the state for several particles (4.30) is obtained from lower
dimensional tori. Recalling that we can describe double phase space in terms
of the centre coordinates, x, and the conjugate variables, y = Jξ (4.47),
the semiclassical Wigner function, W (x), is then a superposition of complex
exponentials, such that each phase is obtained by integrating y(x) along one
of the different branches of the torus. Even though this approximation breaks
down along caustics, the latter provide ready indication of regions where the
Wigner function has a large intensity.

The problem is then to relate the semiclassical Wigner function, defined
on the centre plane, to classical structures that are also portrayed in this
same single phase space. Let us consider first the semiclassical Wigner and
chord functions in the simplest case where L = 1. The Fock states (4.104)
are good examples of semiclassical torus states when the quantum number n
is large. Introducing the asymptotic expression for Laguerre polynomials,

lim
n→∞

Ln

(
z2

2n

)
= J0

(√
2z
)
, (4.157)

together with the large argument expansion,

J0(y) ≈
2

√
πy

cos
(
y − π

4

)
, (4.158)

brings the Wigner function (4.7) for these states into a semiclassical form. To
understand this, we must investigate the geometry of the double torus from
the point of view of the simpler quantized curve, which is just a circle in this
case.
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Every point on the double torus represents a pair of points on the quan-
tized curve and vice versa. A given pair of points on the quantized curve, x±,
defines a geometric chord: ξ = x+−x−. Hence, y = Jξ is the chord coordinate
on the double torus, which has the centre coordinate, x = (x+ + x−)/2. Ob-
viously, the exchange of x+ with x− produces a new chord of the quantized
curve with the same centre, x. Viewed in double phase space, there must
always be pairs of chords of the double torus projecting onto each centre, x.
The symmetry of this surface with respect to the identity plane, y = 0, leads
to complex conjugate phase contributions, in line with the above cosine for
the Fock state. Actually this is a general feature: Because the Wigner func-
tion is real, the chord pairs will always produce semiclassical contributions
adding up to cosines.

To obtain the phase of the cosine contribution to the semiclassical Wigner
function for each pair of chords, the best course is to use a result which was
put in its most general form by Littlejohn [29]. This concerns the general
overlap, 〈ψ|φ〉, of quantum states associated semiclassically to curves τψ and
τφ: The semiclassical contributions arise from the intersections of these clas-
sical curves and the phase difference between a pair of contributions is just
the area sandwiched between the corresponding pair of intersections, divided
by Planck’s constant, as shown in Fig. 4.8.

We can immediately apply this principle to the Wigner and chord func-
tions for pure states, by recalling that Wψ(x) = (π�)−1〈ψ|(R̂x|ψ〉) and
χψ(ξ) = (2π�)−1〈ψ|(T̂ξ|ψ〉). The semiclassical state R̂x|ψ〉 is merely the state
constructed from the reflected curve, Rx(τψ), whereas T̂ξ|ψ〉 corresponds to

Fig. 4.8. (a) The semiclassical Wigner function is constructed by reflecting the
torus τ around the point x: The chords ξ(x) are defined by the intersections with
Rxτ . (b) The semiclassical chord function is constructed by translating τ by the
vector ξ: The centres x(ξ) lie halfway back along ξ from each intersection of τ with
Tξτ
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the translated curve Tξ(τψ). Therefore, in the case of the Wigner function,
we obtain the phase of the cosine as half of the area sandwiched between the
torus and its reflection at the centre x [22], which coincides with the area
between the torus and the chord [84, 85] (see also [86]). Furthermore, this
construction supplies, at a glance, the tips of all the chords centred on x
as the intersections between both curves, as seen in Fig. 4.8(a). Note that
once the curve has been reflected around the origin, we need only translate
R0(τψ) to obtain the reflections around all other centres because of the group
property, Rx = Tx ◦R0 ◦ T−x.

The same geometrical method can be used to study the structure of cen-
tres for a pre-specified chord ξ on the curve τψ. Each intersection of τψ with
the translated curve Tξ(τψ) reveals one of the tips where the chord is to be
placed and hence the centre of the chord, as shown in Fig. 4.8(b). In the case
of open curves, the chord function may actually be simpler than the Wigner
function because it is not necessary to have interference, as in the case of the
parabola, for which there is only one intersection. In the case that τψ has a
centre of symmetry, as in the example of the Fock state, we thus find that
the simple relation (4.99) between Wigner and chord functions is respected
by the semiclassical approximation.

Viewed in single phase space, the caustics of the Wigner function arise
from coalescing torus chords, as their centre, x, is moved. This occurs at
the tangencies of Rx(τψ) with the fixed curve, τψ. Similarly, the caustics of
the chord function are the loci of ξ such that Tξ(τψ) is tangent to τψ. On
the other hand, in double phase space, the Wigner caustics for a torus state
are viewed as projection singularities of the double torus, τψ ⊗ τψ, which
lies above the area inside τψ. The general geometric constructions underlying
the semiclassical Wigner and chord functions are readily extended to phase
space representations of dyadic operators, |ψ〉〈φ|, corresponding to double
tori, τψ ⊗ τφ. Their Weyl representation is known as cross-Wigner functions
or Moyal brackets [87], whose semiclassical form is presented in [88].

There are many fascinating features of caustics in the phase space repre-
sentations of pure states that have been studied and many more that must
still be analyzed. For instance, the build up in the centre of the Wigner func-
tion for the Fock state is a caustic. Its semiclassical origin is the degeneracy
of a continuum of chords conjugate to the same symmetry centre. However,
this is a nongeneric feature of reflection-symmetric states. If the symmetry
is broken, this supercaustic unfolds into a cusped triangle, first described by
Berry [85]. The unfolding of higher dimensional caustics for rotated product
tori, studied in [22], were also examined for the Wigner function. It turns out
that the double fold surfaces of the Wigner caustic that meet along the torus
do not unfold in the manner portrayed in Fig. 4.4 because of a symmetry
constraint.

The limit of small chords is specially relevant for semiclassical theory. For
the Wigner function, it singles out the classical torus itself as the Wigner
caustic. The uniform approximation for the Wigner function throughout this
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Fig. 4.9. Typical fringes for a semiclassical Wigner function. The classical curve
follows closely the border of the fringes. The triangular structure of interfering
fringes near the centre results from the unfolding of the maximum of the Fock
states due to symmetry breaking

region is presented in [85], for the case of a curve and in [89], for a two-
dimensional torus. A pair of sheets of the double torus are joined on the
identity plane along this curve or torus. The large amplitude of the Wigner
function oscillations near the quantized curve is due to this caustic. The cor-
responding caustic of the chord function collapses onto the origin, whatever
the geometry of the classical region. The neighbourhood of this highly non-
generic chord-caustic is discussed in [32]. Once again, we find that all regions
where C(ξ) = |χ(ξ)|2 is large, outside of an �

L/2-neighbourhood of the origin,
point to phase space correlations that are truly quantum in nature.

AU: Please provide
text citation for
Fig. 4.9.

So far, we have only discussed static properties of the density operator.
In turning to dynamics, a preliminary point is that we should distinguish
the Weyl propagator , U(x), that is, the Weyl representation of the evolution
operator, from the propagator for Wigner functions. The former is unitary
and is hence supported by its own static Lagrangian surface in double phase
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space, as discussed in Sect. 4.5, so that its semiclassical description is similar
to that of the Wigner function itself. This can be deduced from a path integral
in single phase space [33, 90].

In order to treat the unitary evolution of the density operator for a pure
bound state, |ψ〉〈ψ|, with L degrees of freedom, we need to consider the cor-
responding classical evolution of a 2L-D Lagrangian torus, τψ ⊗ τψ. Initially,
this is separable within both single phase spaces, even though the product
is not factored in the centre×chord coordinates. The classical motion must
propagate the tips of each chord, x− and x+, in the same way. Taking account
of the change of sign, p− → −p−, in the definition of double phase space, we
find that the double phase space Hamiltonian must be

IH(X) = H(x+)−H(x−) = H(x− Jy/2)−H(x + Jy/2) . (4.159)

This classical Hamiltonian can be verified to preserve the product form of
the geometric structures in each of the phase spaces x±, but it will not pre-
serve initial products within each of these in the general case that the single
Hamiltonian H(x) has coupling terms between different degrees of freedom. It
propagates Lagrangian surfaces in double phase space that correspond either
to density operators (according to the Liouville–von Neumann equation) or
to unitary operators (the Heisenberg equation). The explicit formulae for the
semiclassical evolution of the Wigner function are given in [91, 92], whereas
the evolving action of the chord function is presented in [93]. The difficulty
that cannot be avoided by changing the representation lies in the caustics of
the initial state, which require more sophisticated semiclassical treatment.

A promising approach lies in the definition of integral propagators for the
Wigner function, or for the chord function. The former may be defined in
terms of the Weyl propagator as a kind of second-order Wigner transform
(see e. g. [91])

UU(xt,x) =
∫

dμU−t

(
x + xt

2
− μ

)
Ut

(
x + xt

2
+ μ

)
exp

(
2i
�
μ ∧ (xt − x)

)
.

(4.160)
Their explicit semiclassical form has been developed in [94], but these propa-
gators also have their own intrinsic caustics. More recently, caustic-free prop-
agators, from the Wigner to the chord function and vice versa, have been
defined [93]. These are constructed either in terms of the propagation of the
unitary reflection operators or the translation operators, instead of directly
evolving the density operator itself.

Several of the geometrical structures underlying the semiclassical the-
ory of the Wigner function for nonseparable tori in double phase space that
evolve under the action of a general Hamiltonian were analyzed in [22] for
the simplest case where L = 2. It will be necessary to push much further this
analysis, while adapting it to the chord function. The reason is again that
the partial trace of the density operator is obtained immediately by a section
through the chord function, χ(ξ1, ξ2 = 0), which is defined semiclassically by
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a nonseparable section of the double torus that evolved from an initial prod-
uct τψ ⊗ τψ. For instance, the quantum state and the corresponding double
torus both loose their product form under the action of the simple Hamil-
tonian employed in Sect. 4.8. But slicing through a torus produces either a
single or several lower dimensional tori.

This indicates that the semiclassical theory of reduced density operators
that allow us to quantify entanglement, or to calculate the correlations on
separate measurements effected on each component of the system, can still
be associated to lower dimensional Lagrangian surfaces that are no longer
products. The problem is to work out the actions and the amplitudes for this
multidimensional geometry. This general picture agrees with initial results
for nonunitary Markovian evolution of semiclassical Wigner functions [95]. It
is notable that the same methods that have been used in [96] to show that
the semiclassical approximation of the Wigner function satisfies the purity
condition, tr ρ̂2 = ρ̂, reveal the loss of purity with time due to decoherence.

A question that has deserved some attention concerns the effect of classi-
cally chaotic evolution on decoherence of an open system, or equivalently on
the evolution of a system entangled to a larger system. There are indications
that the reduced density matrix will loose its purity faster than in the case
of regular internal motion [97], and this is verified exactly for quadratically
hyperbolic Markovian systems [72], which capture a small element of chaotic
behaviour. However, it must be stressed that there is no essential extra dif-
ficulty, in dealing semiclassically with the short-time evolution generated by
chaotic hamiltonians, over regular motion.

In contrast, the evolution of initial pure states, which are eigenstates of
chaotic Hamiltonians, is a much tougher problem. According to Shnirelman’s
theorem [98–100], in most cases these ergodic states are supported by the
full energy shell, in the sense that averages of smooth observables are well
approximated by classical averages over this surface. Often, such a state is
thus described as having a δ-function over the shell for its Wigner function,
but this is not true of its detailed structure: The intimacy between the Wigner
function and phase space reflections implies that interference fringes generally
exist halfway between classical regions of the Wigner function. According to
the discussion of correlations of the Wigner function in Sect. 4.6, these are
equal to their Fourier transform, for all pure states. Therefore, a Wigner
function supported by an energy shell of large phase space dimensions must
have oscillations in its interior of correspondingly small wavelength. These are
readily derived semiclassically for mixtures of states within a narrow energy
range [33, 101], but the fine features of pure states have so far eluded all
theoretical efforts.

So far, our discussion has concerned a chaotic initial state for the rel-
evant component, but nothing prevents us from defining an initial state
that is ergodic for some chaotic Hamiltonian defined over the full product
Hilbert space of the system with its environment. The situation is then radi-
cally different from the states that have evolved semiclassically from product
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states: It is possible to disentangle each state that has lost its original prod-
uct form by merely reversing time. This corresponds classically to running
Hamilton’s equations backwards in the double phase space; e.g., in the ex-
ample of Sect. 4.8, the product of two harmonic oscillator ground states is
recovered from the EPR state. This is always possible in quantum mechan-
ics because one can always specify a unitary transformation on the entire
Hilbert space, which transforms any given state into any other state and we
can choose the latter to be a product state. However, the correspondence
for this disentanglement cannot exist for ergodic eigenstates of a classically
chaotic Hamiltonian defined on the full Hilbert space.

In the case where L = 2, the energy shell is 3-D and, because it has an
extra dimension, there exists no classical canonical transformation, whether
linear or nonlinear, that can transform it into the product of two closed
curves. Therefore, ergodic eigenstates are essentially entangled from the point
of view of classical correspondence. The study of traces of classical chaos in
quantum mechanics is known as quantum chaology [86]. The characterization
of ergodic states as those that are not classically disentangleable establishes
a bridge between entanglement theory and quantum chaology. It remains to
be seen whether this special type of entangled state has any application in
quantum information theory.
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